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Abstract

Food scarcity has become a global issue. The large amount of solid waste produced by cities  
every day generates an incalculable amount of toxic substances, including mercury, lead, iron 
and other heavy metals and harmful chemicals, as well as radionuclide ions, which can cause 
great harm to people’s health and safety when they are transferred to the soil, water, plants and 
air. Excessive industrial development has led to the infiltration of high polymers and heavy 
metals into agricultural soil, endangering the health of our food. One other major factor impact-
ing soil quality is the waste produced from construction sites; this waste is mostly backfilled 
directly into the local soil, causing varying degrees of secondary contamination. Scientists have 
had to adopt various methods to adjust soil structure, change soil pH, as well as reduce the 
composition and content of heavy metals in the soil. Among these different approaches, scien-
tists find natural zeolites can improve soil quality and combat soil pollution. Zeolite has excel-
lent ion exchange and adsorption capacity, and is currently widely used as an environmentally 
friendly soil conditioner in many soil restoration and improvement fields such as ecological  
organic agriculture, urban soil pollution improvement, and artificial soil construction, which has 
very important social and economic values for improving soil quality and agricultural produc-
tion. Adding zeolite to the soil to be restored and improved in the city can effectively adsorb 
heavy metals and other substances. Based on current research, we collected and obtained data 
from a large number of previous papers to evaluate the extent of zeolite’s effect on soil as well 
as plants, as scientists attempted to use zeolite to mitigate soil contamination.
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INTRODUCTION

As highlighted in the Global Food Crisis Report 2021, due to ongoing 
conflicts, pre-existing and COVID-19 related economic shocks, and extreme 
weather impacts, food security has become one of the prevalent issues affec- 
ting sustainable human development. However, the production of major 
crops such as rice (Oryza sativa L.) and maize (Zea mays L.), which account 
for more than half of the world’s crop production, is plagued by soil contam-
ination. Soil contamination adversely affects food security in two ways:  
i) it may reduce crop yields due to the toxicity levels of the contaminants; 
and ii) crops grown in contaminated soils are unsafe for animal and human 
consumption. For example, in China and India, two major rice-producing 
regions, the excessive use of mineral nitrogen fertilizers has increased soil 
acidity, resulting in significantly lower rice yields. Simultaneously, industrial 
activities such as mining and calcination have led to the contamination  
of rice fields with heavy metals (e.g., zinc, copper, or cadmium), making rice 
a bioaccumulator of carcinogenic trace elements, which raises concerns about 
the health risks of long-term ingestion.

Soil is a critical component of the environment and is the foundation  
for society to obtain resources, and therefore it has a great significance in the 
development and progress of humanity. Currently, with the continuous  
prosperity of the world industrial economy, heavy metal pollution in soil  
is becoming more and more serious. In addition, soil heavy metal pollution is 
somewhat hidden and irreversible, which has a great impact on the ecologi-
cal environment and human health. This problem requires scientists to 
strengthen the analysis of the current situation of soil heavy metal pollution 
and figure out the causes of its pollution, so as to study effective treatment 
measures and improve soil pollution levels. For example, in Japan, a soil 
heavy metal poisoning disease called “Itai disease” emerged in the 1970s, 
which was caused by mining contamination of soil in Toyama Prefecture. 
The contamination resulted in cadmium poisoning (Kaji, 2012). A high con-
centration of cadmium in soil eventually destroys the soil quality and further 
leads to an excess of cadmium in rice grown in the soil. As a result of the 
contamination, the mitochondria of kidney cells are destroyed, leading  
to severe pain felt in the spine and joints (Inaba et al. 2005).

Zeolite, or natural zeolite, is a group of silicate minerals with a wide 
distribution. It consists of a three-dimensional lattice of silica-oxygen tetra-
hedra and aluminum-oxygen tetrahedra linked by shared oxygen (Rollmann 
et al. 1995). The excess negative charge resulting from the replacement  
of tetravalent silicon by trivalent aluminum is balanced by monovalent  
or divalent metal cations, usually alkali or alkaline earth metal cations.  
Zeolites have adsorption and ion-transformation functions, and because each 
zeolite has its own specific homogeneous pore size (0.3 to 1 nm), only mole-
cules of the corresponding size can pass through. This allows for zeolites  
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to be widely used as catalysts or carriers, desiccants, feed additives, soil con-
ditioners, sewage purifiers, fillers for plastics and paper, and potassium  
extraction from seawater. 

Over the past few decades, scientists have conducted various studies and 
experiments on soil remediation. The application of zeolite has been reported 
to be effective, reasonably priced, and widely used to improve soil acidity and 
crop yields. Zeolite use can improve pH and reduce heavy metal solubility  
in soil by increasing precipitation and adsorption efficiency. Additionally, 
some evidence suggests that zeolite can reduce heavy metal concentrations 
in plants by decreasing the phytoeffectiveness of soil metals. However,  
the effects of zeolite on crop growth and soil metal concentrations may vary 
depending on environmental factors such as crop type, initial soil pH, and 
soil organic carbon (SOC) content. The heterogeneity of studies, environmen-
tal conditions, and crop types makes it challenging to determine global  
attitudes toward zeolite use from the observations of different researchers. 
This obstacle hinders the global dissemination of zeolite treatments and  
a comprehensive assessment of their long-term impact on global food security.

This challenge can be addressed by a quantitative approach that inte-
grates the results of multiple studies. Therefore, a large meta-analysis was 
conducted to summarize the effects of zeolite application on soil remediation 
and plant growth in the context of heavy metal contamination with the goal 
to identify important factors affecting the efficiency of zeolite application on 
global crop production.

MATERIAL AND METHODS

Material
To collect data, we used Scopus (SCOPUS.com) to retrieve peer-reviewed 

articles published before January 2022 for zeolite “heavy metal” soils or zeo-
litization “heavy metal” in plant soils for article titles, abstracts, and key-
words. The following criteria was used to exclude irrelevant literature. First, 
the study must have a blank or unqualified group as a control group. Second, 
the other treatments needed to have the same variables in each experiment. 
Third, the paper must include either soil pH or heavy metal concentration 
data. Fourth, the replication time of each experiment needed to be recorded 
in the paper.

In this study, we collected 175 pairs of observations from 56 relevant 
papers (Table 1). The information was processed manually from the content 
of these papers. Considering the non-intuitive graphical data, we used Get-
Data software to extract useful information, mean and standard deviation.  
If the value is used as standard error, we will use this formula to calculate 
the standard error back to the standard deviation. For this study, all papers 
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collected data on zeolite dosage (kg ha-1), experiment duration (years), per-
centage of clay in the soil, soil organic carbon value (g kg-1) and total nitro-
gen (g kg-1). For laboratory data, we collected data on soil pH, and soil metal 
concentrations (mg kg-1) of copper, lead, nickel, arsenic, cadmium, zinc, and 
iron (mg kg-1) before and after zeolitization.

Methods
We have drawn a global statistical map (Figure 1) of the experimental 

sites through the R language. This allows better visualization of the distribu-
tion from which the data originated.

We collected the mean and standard deviation of soil pH and heavy metal 
concentrations. These data were used to calculate coefficients of variation  
for the control and experimental groups. For all control and experimental 
variables, we calculated the data as the natural logarithm of the response 
ratio for Meta-analysis (Liao et al. 2021) by the equation:

(1)

where, in this equation, X represents the mean, pH, or heavy metal concen-
tration of the data for the treatment and control groups. ln RR is calculated 
as the inverse of the variance. Unrecorded variances were filled by averaging 
hold list data (Liao et al. 2021, Qian et al. 2020).

For the significance analysis, the variance of ln RR was calculated using 
the following equation:

(2)

where SD denotes the standard deviation of the treatment and control 
groups, N denotes replicates of each study, and x denotes the arithmetic 
mean of pH values and different heavy metal concentrations.

We used subgroup analysis (Figures 2-11) to average zeolite rate data, 
time data during the experiment, clay percentage, and soil organic carbon 
concentration into low, medium, and high. For the resampling test, we used 
4999 as the number of iterations. We standardized the units of zeolite dosage 
to kg ha-1, duration to years, clay amount to percentage, soil organic carbon 
to g kg-1, and total nitrogen to g kg-1. Summary analysis was used in Metawin 
software to assess the significance of each subgroup of data by entering the 
effective size and variance of ln RR. We calculated Prob (chi-square test), 
Prob (Rand test), mean effect size, 95% confidence interval, Bootstrap confi-
dence interval and deviation confidence interval to demonstrate whether 
these data are highly significant.
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RESULTS

After analyzing all the data, it was found that zeolite application was 
very effective in controlling soil contamination. The average amount of zeo-
lite used in the experiment was 14,851.95 kg ha-1. The average duration  
of the experiment was 1.3 years. The average condition of the soil was 17.9% 
clay compared to other components of the soil, such as sand and chalk.  
The average soil organic carbon concentration was 16.8 g kg-1 and the total 
nitrogen value was 373.9 g kg-1.

Zeolite application decreased the As content in the soil by 19.1 mg kg-1 
and the proportion by 13.6%. The Cr content in the soil decreased by  
13.2 mg kg-1, with a proportional decrease of 11.1%. The Cu content  
in the soil decreased by 29.1 mg kg-1 and the proportion decreased by 17.4%. 
The nickel concentration in the soil decreased by 10.5 mg kg-1, into a propor-
tional decrease of 10.9%. The iron concentration in the soil decreased  
by 9.5 mg kg-1, a proportional decrease of 13.4%. Lead concentration in the 
soil decreased by 32.7 mg kg-1, a proportional decrease of 18.2%. The Zn con-
tent in the soil decreased by 14.6 mg kg-1, a proportional decrease of 10.2%. 
Soil pH increased by 1.47, corresponding to a 27.5% increase (Figures 2, 3). 

The results of the subgroups are shown below, after the calculation of 
the Excel code, and all background data were aliquoted. The category of zeo-
lite usage below 2300 kg ha-1 will be considered as “low”, above 2301 kg ha-1 
but below 8000 kg ha-1 will be considered as “medium”, and above 8001 kg ha-1 
will be considered as “high”.  Experimental time less than 0.17 years will  
be considered as “low”, more than 0.18 years but less than 0.68 years will be 

Fig. 2. Experimental results of highly toxic heavy metals: Cr, As, Pb and Ni
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considered as “medium”, and more than 0.68 years will be considered as 
“high”. Soil organic carbon concentration less than 5 g kg-1 is considered 
“low”, more than 5.1 g kg-1 less than 19.6 g kg-1 is “medium”, and greater 
than 19.7 g kg-1 is “high”. The category of total soil nitrogen concentration 
less than 0.41 g kg-1 will be considered “low”, higher than 0.42 g kg-1 but less 
than 1.5 g kg-1 will be considered “medium”, and higher than 1.51 g kg-1 will 
be considered “high”.

The data indicates that zeolite application has a positive effect on rais-
ing soil pH and reducing heavy metal concentrations. To further explore the 
correlation between these changes and environmental factors and their sig-
nificance, we need to summarize the analysis of the different subgroups we 
presented in the results section.

DISCUSSION

During the initial analysis of the data, the overall homogeneity test was 
performed, and the result of the homogeneity test Prob (chi-square test)  
is less than 0.05, which proves the existence of heterogeneity, using a fixed 
effects model, not significant, using a random effects model. In the second 
step, inter-subgroup effects were tested. First, different subgroups were  
tested for heterogeneity, high and medium, if less than 0.05, this proved the 
existence of heterogeneity and the need for further grouping, if not signifi-
cant, this proved the absence of heterogeneity within the group.

Fig. 3. Experimental results of heavy metals: Fe, Cu, Zn and pH value
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Comparisons between the groups (if significant) can demonstrate that 
the effects are significantly different between the high and medium dose 
groups. The effect values and 95 confidence intervals E+ are given for each 
subgroup. Finally, the overall heterogeneity test and E++ implementation 
are given. Sub-groups in the following figures from up to down are: clay per-
centage (%), duration of application (years), zeolitization rate (kg ha-1), soil 
organic carbon (g kg-1), and total nitrogen (g kg-1). 

The effect of zeolite on soil arsenic content under different soil 
properties

From the Figure 4, it can be seen that the effect of different clay content 
on soil arsenic content is basically the same (p=0.996); the mid clay percent-
age group had a significant negative effect on soil arsenic content, zeolite 

Fig. 4. Heterogeneity test results of As
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treatment can significantly reduce soil arsenic content, confidence interval 
are less than 0. 

The effect of different duration (years) of zeolite application on soil arse-
nic content had a significant difference; zeolite treatment with lower applica-
tion duration (years) can significantly reduce soil arsenic Zeolite treatments 
with lower application time significantly reduced soil arsenic content. 

The effect of zeolite on soil chromium content under different soil 
properties

It can be seen from Figure 5 that the effects of zeolite on soil chromium 
content were consistent for different groups of clay percentage, duration  
of application (yr), zeolite dose (kg ha-1), SOC (g kg-1), total N (g kg-1), p>0.05.

Fig. 5. Heterogeneity test results of Cr
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The effect of zeolite on soil copper content under different soil 
properties

It can be seen from Figure 6 that there was a significant difference  
in the effect of zeolite on the soil copper content in the different zeolite dose 

(kg ha-1) groups (p=0.019). There was no significant effect of zeolite on the 
soil copper content in the low zeolite dose group, while there was a signifi-
cant negative effect in the medium high zeolite dose groups. In all groups, 
zeolite reduced soil copper content.

The effect of different total nitrogen amount (g kg-1) on the soil copper 
content was significantly different (p=0.001). In the low, medium, and high 

Fig. 6. Heterogeneity test results of Cu
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total nitrogen groups, zeolite significantly reduced the soil copper content, 
but the effect observed in the low total nitrogen group was substantially 
greater than that of the medium and high total nitrogen groups.

The effect of zeolite on soil nickel content under different soil 
properties

From Figure 7, it can be seen that the effect of different clay percentage 
groups and zeolite on the soil nickel content differed in significance 

(p=0.005). In the low and mid clay percentage groups, zeolite had a signifi-
cant effect on reducing soil nickel content; however, the effect of the high 
clay percentage group is not significant.

There was a significant difference between different zeolite dose (kg ha-1) 
groups on the soil nickel content (p<0.01). In the high dose group, zeolite 

Fig. 7. Heterogeneity test results of Ni
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could significantly reduce the soil nickel content. In the mid and low dose 
groups, zeolite had no significant effect on the soil nickel content.

The effect of zeolite on the soil nickel content was significantly different 
for different SOC (g kg-1) groups. Zeolite in low and high SOC groups could 
significantly lower soil nickel content, and zeolite in the mid SOC group had 
no significant effect on soil nickel content.

The effect of different total nitrogen (g kg-1) groups on soil nickel content 
was significantly different (p=0.029). In the low and mid total nitrogen groups, 
zeolite significantly reduced the soil nickel content, but in the high total nitro-
gen group, zeolite had no significant effect on the soil nickel content.

The effect of zeolite on soil iron content under different soil 
properties

From Figure 8, it can be seen that the effect of zeolite on the soil iron 
content in different duration of application (years) groups differed in signifi-

Fig. 8. Heterogeneity test results of Fe
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cance (p=0.002). In the low and mid duration groups, zeolite had no signifi-
cant effect on the soil iron content, while the high duration group zeolite 
demonstrated a significant reduction of the soil iron content.

There was a significant difference of the effect of zeolite on the soil iron 
content in the different zeolite dose (kg ha-1) groups (p=0.027). The mid dose 
group significantly reduced the soil iron content, while in the high and low 
dose groups, zeolite had no significant effect on the soil iron content.

The effect of zeolite on the soil iron content was significantly different 
for different SOC (g kg-1) groups. Within the mid SOC group, zeolite was able 
to significantly reduce the soil iron content, but in the high and low SOC 
groups, zeolite had no significant effect on the soil iron content.

The effect of zeolite in combination with different total nitrogen (g kg-1) 
groups was significantly different (p<0.001). In the mid total nitrogen group, 
zeolite was shown to significantly reduce the soil iron content. However,  

Fig. 9. Heterogeneity test results of Pb
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in the high and low total nitrogen groups, zeolite had no significant effect  
on soil iron content.

The effect of zeolite on soil lead content under different soil 
properties

From Figure 9, it can be seen that different clay percentages resulted  
in significant differences among the effects of zeolite on the soil lead content 
(p=0.001). Within the low and mid clay percentage groups, zeolite significant-
ly reduced soil lead content, while the effect of zeolite with the high percent-
age group is not significant.

The effect of different total nitrogen (g kg-1) concentration on zeolite’s 
ability to affect the lead content was significantly different (p=0.005). Zeolite 
in low, mid, and high total nitrogen groups was able to significantly reduce 

Fig. 10. Heterogeneity test results of Zn
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soil lead content; the effect in the low total nitrogen group was the largest 
and the effect of mid group was the smallest.

The effect of zeolite on soil zinc content under different soil 
properties

Within all the different analyzed soil groups, there was no significant 
difference observed. Zeolite did not have a statistically significant effect on 
the zinc content as the p-value of all data sets was above 0.05 (Figure 10).

The effect of zeolite on soil pH under different soil properties
From Figure 11, it can be seen that the effect of zeolite on soil pH in 

different duration of application groups differed significantly (p=0.016). Zeo-

Fig. 11. Heterogeneity test results of Zn
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lite in the low, mid, and high duration groups significantly increased soil pH;  
the effect in the low duration group was the largest and the effect in high 
duration group is the smallest. 

Soil As, Cr, Cu, Fe, Ni, Pb, Zn, pH total effect
From Figure 12, it can be seen that zeolite has a significantly negative 

effect on soil copper, iron, nickel, lead and zinc, demonstrating that zeolite 
can significantly reduce the content of these metals in soil; meanwhile, there 
is a difference between studies regarding the effect of zeolite on soil As, Cr, 
Fe, Ni and Zn content, p<0.05.

Fig. 12. Heterogeneity test results of pH
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CONCLUSIONS

We have found that natural zeolites have a significant remedial effect  
on contaminated soils. The application of zeolite led to a significant improve-
ment in the acidification of the soil ponds. The heavy metal content of the 
soil decreased to varying degrees, especially for copper, lead and zinc.  
We also discussed the issue of data heterogeneity and concluded that the 
data and analysis were reliable.
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