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AbstrAct

The progressive degradation of soils is a recently increasing environmental problem. The risk  
of soil degradation may be associated, for example, with landslides, flooding, soil erosion. How-
ever, these are relatively rare phenomena compared to the risk of chemical degradation caused 
by human activity. Given the limited research on the positive effect of miscanthus biochar  
on soil properties, a study was carried out aimed at determining changes in pH, electrical  
conductivity, sorption properties, and mobility of selected heavy metals in sandy soil treated 
with various chemicals. Biochar used in the study was produced at a temperature of 300°C.  
The addition of biochar to soil generally increased the pH value, regardless of the type of chemi- 
cal degradation. The study revealed a decrease in the hydrolytic acidity value and, at the same 
time, no significant changes in the content of alkaline cations and sorption capacity of the  
biochar-treated soil. The best effect on reducing the mobility of trace elements was achieved  
by adding biochar to the soil supplemented with acidifying substances. Bearing in mind the 
current agricultural and environmental problems, there is a need to increase the effectiveness 
of biochar and to direct its action to improve specific soil properties.
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INTRODUCTION

Thermal transformation of waste biomass can be a promising approach 
to solve environmental problems. This process has a positive effect not only 
by disposing of substantial amounts of waste, but also by creating a product 
that can be widely applied, i.e. biochar. The interest in biochar expressed by 
scientists and practitioners has not been waning for several years and there 
are more and more potential applications of this product. Biochar enhances 
carbon sequestration and reduces greenhouse gas emissions. It is often used 
as a biofuel and a means for wastewater treatment, soil fertility enhance-
ment, and reclamation of degraded soils (Lee et al. 2018). The properties  
of biochar largely depend on the pyrolysis temperature and on the type of feed- 
stock. As reported by Zhao et al. (2013), biomass transformed at ca. 200°C 
retains properties comparable to those of the feedstock used in the process. 
Only pyrolysis carried out at ca. 300°C changes the physical and chemical 
properties of the product, as well as the content of aliphatic and aromatic 
carbons in it (Gai et al. 2014). Wu et al. (2012) demonstrated that biochars 
produced at 300-400°C have the highest aromaticity. These authors also  
discovered that biochars produced at >400°C exhibit reduced functionality, 
lower hydrophilicity, and a reverse tendency towards oxidation. On the other 
hand, Wu et al. (2012) reported disintegration of functional groups induced 
by thermal degradation at temperatures above 600°C. Therefore, it can be 
concluded that efficiency of biochar depends on its production method.

The progressive degradation of soils is a recently increasing environmen-
tal problem, which leads to partial or complete loss of soil functions (ZhanG 
et al. 2016). The risk of soil degradation may result from landslides, flooding 
or soil erosion. However, these are relatively rare phenomena compared  
to the risk of chemical degradation caused by human activity (TóTh et al. 
2008). Soil degradation depends largely on its properties and location.  
For example, if the soil is located near /8an industrial plant, it will be more 
exposed to degradation factors. In Poland, most soils are classified as light 
soils, and their quality is substantially deteriorated by acidification (FiLipek 
and SkowrońSka 2013). The problem of soil salinity and local alkalisation 
(not only in Poland) is increasingly being addressed (widłak 2016, SaiFuLLah 
et al. 2018). These degrading factors are a consequence of human industrial 
and agricultural activity. Changes in the chemical properties of soils signifi-
cantly affect the biological activity in soil and the chemistry of soil processes, 
including changes in the trace element availability (BiSWaS et al. 2018).

As shown in the available literature, the application of biochar to soil 
may cause decomposition of carbonates and hydroxides contained therein, 
thus increasing soil pH (kookana et al. 2011, Lucchini et al. 2014). In turn, 
chenG et al. (2006) argued that the application of biochar in soils can release 
acidifying substances through chemical and microbiological processes. This 
situation occurring in a short time (four months after the application) was 
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also confirmed by Liu and ZhanG (2012). Similarly, inaL et al. (2015) reported 
that the use of poultry litter biochar reduced the pH value in alkaline soil. 
Liu and ZhanG (2012) suggested that this may be associated with the release 
of acidic functional groups during biochar oxidation. As shown by aTkinSon 
et al. (2010), Ca and P may be bound in such conditions, consequently reduc-
ing the concentration of Ca ions in the soil solution.

Biochar application can greatly reduce the content of salts easily soluble 
in the soil solution (SoLaiman, anaWar 2015). This is related to the properties 
of biochar, primarily its sorption capacity (narTey, Zhao 2014). Gondek and 
mierZWa-herSZTek (2016) proved that the feedstock used for biochar produc-
tion has an important role in the inactivation of ions responsible for the  
increase/decrease of the soil solution electrical conductivity. These authors 
demonstrated that the application of pig manure and poultry litter biochars 
increased the soil electrical conductivity, proportionally to the biochar dose.

Scientific papers provide many divergent data on the biochar effect  
on soil properties (ZhanG et al. 2016). This situation is dictated not only  
by the conditions under which the experiment is carried out, but also by the 
parameters and the feedstock used to produce biochar. According to raSSe  
et al. (2017), durability is an important element in choosing the type of bio-
char. The cited authors demonstrated that miscanthus biochar is stable, and 
the estimated average time of its decomposition in soil is >100 years.

Given the limited volume of research on the positive effect of miscanthus 
biochar on soil properties, a study was carried out aimed at determining 
changes in pH, electrical conductivity, sorption properties, and mobility  
of selected heavy metals in sandy soil treated with various chemicals.

MATERIAL AND METHODS

The properties of the soil analysed in the study, sampled from the 0-0.2 m 
layer of an arable field in southern Poland, Malopolska province (50°09′34″ N 
and 19°66′28″ E), are shown in Table 1.

The process of thermal transformation of Miscanthus giganteus  
(miscanthus) straw was carried out under laboratory conditions in a facility 
for thermal transformation of biomass with limited access of air – 1-2%  
(iBi 2012). The temperature in the combustion chamber was 300±10°C.  
The combustion chamber heating rate was 10°C min-1. Duration and tem-
perature of pyrolysis were established in preliminary investigations  
and based on other authors’ results (Lu et al. 2013). Some properties  
of miscanthus straw and biochar are shown in Table 2.

Miscanthus straw and biochar were 1 mm ground in a laboratory mill. 
Subsequently, dry matter content was determined after drying materials  
at 105°C for 12 hours. The control soil sample was air-dried and 1 mm 
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sieved. The pH of starting materials was determined electrochemically and 
electrical conductivity was assessed conductometrically. The contents  
of nitrogen, carbon, and sulphur were determined using a CNS analyser 
(Vario Max Cube, Elementar). Total contents of potassium, phosphorus, and 
selected trace elements were determined after placing organic material sam-
ples in Teflon vessels and treating them with 6 cm3 of concentrated HNO3 
(Suprapur 65%) and 2 cm3 of H2O2. Then, materials were mineralised in a 
closed system using an AntonPaar Multiwave 3000 microwave. The total 
content of trace elements was determined in the control soil sample mine- 
ralised at 450°C in a chamber furnace. The contents of potassium, phospho-
rus, and selected trace elements in organic materials and soil were deter-
mined by inductively coupled optical emission spectrometry (ICP-OES) using 
a Perkin Elmer Optima 7300 DV device. The specific surface area of organic 
materials (SBET) as well as pore volume and diameter were determined using 
the method described by BarreT et al. (1951).

Table 1
Selected chemical and physical properties of soil

Determination Units Value
pH H2O - 5.79±0.07
pH KCl - 4.60±0.01

EC mS cm-1 0.21±0.09
Sum of exchangeable 
alkaline cations (S) mmol(+) kg-1 d.m. 135.0±3.3

Hydrolytic acidity (Hh) mmol(+) kg-1 d.m. 21.6±2.1
Organic Carbon g kg-1 d.m. 4.20±0.10

Total N g kg-1 d.m. 0.87±0.04
Total K g kg-1 d.m. 0.81±0.08
Total P g kg-1 d.m. 0.17±0.00

Total Cd mg kg-1 d.m. 0.22±0.02
Total Cr mg kg-1 d.m. 4.20±0.38
Total Cu mg kg-1 d.m. 3.30±0.07
Total Ni mg kg-1 d.m. 1.96±0.02
Total Pb mg kg-1 d.m. 21.2±1.0
Total Zn mg kg-1 d.m. 23.9±1.8
Total Mn mg kg-1 d.m. 198±10
Total Fe mg kg-1 d.m. 2506±6

Sand g kg-1 d.m. 870±56
Silt g kg-1 d.m. 80±6
Clay g kg-1 d.m. 50±4

Each value represents the mean of three replicates ±SD
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The incubation analyses were carried out on 100 g soil samples supple-
mented with chemical substances, having effect on their acidification (AC), 
alkalisation (AL), and salinity (SL). The experimental design consisted  
of 7 treatments analysed in three replicates: 1) control soil (soil 0), 2) soil +  
+ acidifying substances (soil+AC), 3) soil + acidifying substances + biochar 
(soil+AC+BC), 4) soil + alkalising substances (soil+AL), 5) soil + alkalising 
substances + biochar (soil+AL+BC), 6) soil + salinity substances (soil+SL),  
7) soil + salinity substances + biochar (soil+SL+BC). The soil was acidified 
(AC) with 0.075 M H2SO4 and 0.15 M HNO3 solutions (ratio 1:2). To achieve 
alkalisation (AL), 0.075 M Ca(OH)2 and 0.15 M NaOH (ratio 1:2) were added 
to the soil. The electrical conductivity of the soil (SL) was increased by add-

Table 2
Chemical and physical properties of miscanthus straw and biochar

Determination Units Miscanthus straw Biochar

pH H2O - 6.29±0.60 6.94±0.61

EC mS cm-1 0.34±0.45 0.43±18

Dry matter g kg-1 784±0.3 977±1

Ctotal

g kg-1 d.m.

456±2 651±6

Ntotal 3.97±0.29 7.31±0.09

Stotal 0.58±0.05 2.00±0.24

Ktotal 1.33±0.06 2.81±0.17

Ptotal 0.73±0.04 0.94±0.06

Cdtotal

mg kg-1 d.m.

0.14±0.00 0.31±0.03

Crtotal 1.89±0.34 4.29±0.25

Cutotal 1.77±0.22 4.14±0.31

Nitotal 0.82±0.13 1.78±0.12

Pbtotal 1.15±0.18 2.44±0.29

Zntotal 14.4±4.3 32.0±5.2

Mntotal 34.6±3.0 74.2±4.5

Fetotal 200±48 505±68

SBET m2 g-1 0.39±0.04 0.44±0.01

Pore volume cm3 g-1 0.0007±0.001 0.0023±0.002

Pore diameter nm 6±1 23±3

Maximum pore diameter nm 77 108

±SD; n=3
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ing CaCl2 and NaCl at a 1:1 molar ratio (GoneT et al. 2002). The applied dose 
of biochar was 0.33% of the soil dry weight and was in the range outlined  
by the guidelines on practical aspects of biochar application to field soil  
in various soil management systems (Guidelines... 2010). The adopted amount 
to be introduced was 6.4 t C ha-1.

The sample moisture content during incubation was maintained at 50% 
of soil water capacity. Soil samples were incubated for 210 days at 25±0.10°C

The incubated soil samples were analysed to determine the pH value 
potentiometrically in the soil and distilled water suspension, and in the soil 
and 1 M KCl solution (Gondek, mierZWa-herSZTek 2016). The sum of exchan- 
geable alkaline cations (S) and hydrolytic acidity (Hh) were determined by 
the Kappen’s method, as follows: (S) after 1 h extraction with 0.1 M HCl; 
(Hh) after 1 h extraction with 1 M CH3COONa. Total exchangeable cations 
(T) and saturation with alkaline cations of the sorption complex (V) were 
calculated from the following relationships:

T = Hh + S,
V(%) = (S / T) · 100.

Mobile trace elements were extracted for 2 h with a 1 M NH4NO3 solu-
tion at a room temperature (Park et al. 2011). Then, the element contents 
were determined in extracts using inductively coupled plasma atomic emis-
sion spectrometry (ICP-OES, Perkin Elmer Optima 7300 DV).

Statistical analysis
The experiment was carried out in triplicate. The data was analysed 

using Statistica 12 software (StatSoft Inc.). The mean values of analysed 
properties were compared using the Tukey’s multiple range test at a signifi-
cance level of p≤0.05. Variability within treatments was determined by cal-
culating the standard deviation (±SD).

RESULTS

The experiment was carried out on acidic sandy soil containing  
4.20 g kg-1 d.m. of organic carbon and 0.87 g kg-1 d.m. of total nitrogen.  
The total content of analysed trace elements was typical for uncontaminated 
soils (TóTh et al. 2008) – Table 1.

Miscanthus biochar had higher pH and electrical conductivity (EC)  
values than thermally untreated biomass (Table 2). In biochar, the noted 
levels of all analysed elements and specific surface area values were higher 
than in miscanthus straw.

The addition of biochar to the soil treated with acidifying substances 
increased the pH value, but only measured in water suspension (Table 3).  
In other soil treatments with alkalising (AL) and salinity (SL) substances, 
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the introduction of biochar increased the pH value measured both in water 
suspension and 1 M KCl solution.

The electrical conductivity (EC) value generally did not exhibit any sig-
nificant changes between individual treatments, except for the soil treated 
with salinity substances (Table 3). In the case of soil salinity, the addition  
of biochar significantly increased EC values compared to the Soil+SL treat-
ment.

The application of biochar significantly increased the soil C content com-
pared to the control soil as well as soil supplemented only with acidifying, 
alkalising, and salinity substances (Table 3). A similar tendency was  
observed for the soil N content (Table 3).

The addition of BC reduced hydrolytic acidity compared to treatments 
with acidifying (AC) and alkalising (AL) substances. The Hh value in the 
Soil+AC treatment was higher than in the control soil. In the case of soils 
treated with salinity substances (SL), the lowest difference in Hh values 
(merely 0.1 mmol kg-1 d.m.) was found between biochar-supplemented and 
non-supplemented treatments.

The sum of exchangeable alkaline cations (S) was comparable in each 
treatment, regardless of the dose of biochar and acidifying, alkalising, and 
salinity substances (Table 4). This was also reflected in the T value, which 
was similar in individual treatments.

Once combined with factors modifying soil properties, the application  
of biochar did not induce major changes in the saturation of the sorption 
complex with alkaline cations (V).

The analysis of mobile trace element contents in the soil supplemented 
with acidifying substances demonstrated their reduction after the application 
of biochar (Table 5). The biochar addition increased the mobility of Zn, Mn, 
Cu, Pb, and Cd in the soil treated with alkalising substances and elevated 
the contents of mobile Cu, Fe, and Ni in the soil with salinity substances.

Table 3
Soil pH, electrical conductivity (EC), and the C and N content

Treatment pH H2O pH KCl EC
(mS cm-1)

Total C
(g kg-1 d.m.)

Total N
(g kg-1 d.m.)

Soil (control) 4.65b±0.06 4.45b±0.01 0.22a±0.00 4.19a±0.11 0.400a±0.01
Soil + AC 4.42a±0.04 4.33a±0.01 0.28a±0.02 4.26a±0.11 0.447ab±0.02
Soil + AC + BC 4.58b±0.02 4.38ab±0.02 0.29a±0.03 9.07b±0.73 0.473b±0.04
Soil + AL 5.28e±0.07 4.63c±0.05 0.23a±0.02 4.17a±0.25 0.427ab±0.02
Soil + AL + BC 5.52f±0.02 4.77d±0.04 0.25a±0.01 9.65b±0.97 0.470b±0.02
Soil + SL 4.84c±0.03 4.88e±0.01 6.37b±0.28 4.03a±0.18 0.403a±0.01
Soil + SL + BC 5.03d±0.04 4.97f±0.01 7.38c±0.86 9.11b±0.41 0.467b±0.02

Each value represents the mean of three replicates ± SD. The different letters within a column 
indicate a significant difference at p≤0.05 according to the Tukey’s HSD test
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Table 4
Properties of the soil sorption complex

Treatment
Hh S T V

(mmol kg-1 d.m.) %
Soil (control) 17.3c±0.5 126.9a±7.1 144.2a±6.8 88
Soil + AC 20.8d±0.6 122.7a±15.5 143.5a±15.6 85
Soil + AC + BC 19.6d±0.5 124.0a±11.6 143.6a±12.1 86
Soil + AL 15.5b±0.5 124.4a±14.3 139.9a±14.3 89
Soil + AL + BC 14.2ab±0.3 125.6a±13.1 139.8a±13.2 90
Soil + SL 13.7a±0.6 129.6a±3.2 143.3a±2.5 91
Soil + SL + BC 13.6a±0.6 135.1a±10.7 148.7a±11.1 91

Each value represents the mean of three replicates ± SD. The different letters within a column 
indicate a significant difference at p≤0.05 according to the Tukey’s HSD test.

Table 5
Content of heavy metals extracted with NH4NO3 

Treatment
Cu Zn Mn Fe

(mg kg-1 d.m.)
Soil (control) 0.022abc±0.004 0.61a±0.13 4.0a±0.4 0.58a±0.20
Soil + AC 0.035c±0.004 0.95ab±0.04 23.9abc±1.8 0.35a±0.17
Soil + AC + BC 0.025abc±0.007 0.84ab±0.21 16.2abc±1.1 0.18a±0.02
Soil + AL 0.018abc±0.004 0.56a±0.04 3.0a±0.2 0.38a±0.04
Soil + AL + BC 0.013ab±0.007 0.74ab±0.39 13.6ab±1.8 0.29a±0.12
Soil + SL 0.004a±0.001 1.17b±0.04 38.3c±1.3 0.24a±0.17
Soil + SL + BC 0.011ab±0.001 1.05ab±0.10 36.7bc±3.4 0.55a±0.03
Treatment Cr Ni Pb Cd
Soil (control) 0.009a±0.001 0.044a±0.009 0.200a±0.019 0.024a±0.004
Soil + AC 0.020a±0.003 0.053a±0.004 0.443b±0.038 0.035abc±0.003
Soil + AC + BC 0.015a±0.007 0.051a±0.011 0.302ab±0.011 0.032ab±0.006
Soil + AL 0.009a±0.001 0.049a±0.012 0.129a±0.026 0.025a±0.003
Soil + AL + BC 0.013a±0.004 0.046a±0.022 0.154a±0.088 0.030ab±0.012
Soil + SL 0.020a±0.000 0.032a±0.003 0.241ab±0.031 0.047c±0.001
Soil + SL + BC 0.016a±0.005 0.035a±0.007 0.225ab±0.043 0.044bc±0.001

Each value represents the mean of three replicates ± SD. The different letters within a column 
indicate a significant difference at p≤0.05 according to the Tukey’s HSD test.
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DISCUSSION

Different properties of biochar are mainly related to the type of feedstock 
and temperature of pyrolysis (mierZWa-herSZTek et al. 2019). In general, 
higher pyrolysis temperature allows the transformation of aliphatic com-
pounds into aromatic compounds; therefore, solid pyrolysis products (bio-
chars) can have significantly different physical and chemical properties.  
In the present study, miscanthus biochar produced at 300°C had neutral  
pH (6.94). The rationale for the use of biochar produced at that temperature 
was the type of soil with relatively low buffer capacities and very low carbon 
content. Specific surface area and the macroelement content in miscanthus 
biochar were comparable to those determined in biochars produced from saw-
dust, bark, and wheat straw (Gondek et al. 2017). The heavy metal content 
in miscanthus biochar was lower than that adopted for premium class bio-
chars (Gondek et al. 2017).

As previously mentioned, biochar, with its generally alkaline nature and 
substantial buffer capacity, has deacidification capabilities. However, appli-
cation of this material to alkaline soils may have an opposite effect (dai  
et al. 2017). In this study, the addition of biochar to soils supplemented with 
acidifying and alkalising substances increased the pH value. As stated  
by BreWer et al. (2012), the deacidifying capability of biochar can be attribut-
ed to Ca, K, Mg, Na, and Si cations which form carbonates and oxides during 
feedstock pyrolysis. novak et al. (2009) demonstrated that these cations react 
with hydrogen and aluminium ions, thus reducing acidification, including 
soil exchangeable acidity. yuan et al. (2011) and dai et al. (2017) reported 
that, in addition to carbonates and oxides, functional groups, such as −COO– 
and −O–, which react with H+ in the soil, may significantly reduce acidifica-
tion. Noteworthy, the direction and level of environmental changes after 
biochar application may vary, even despite producing biochar from the same 
feedstock and under the same pyrolysis conditions. This is associated with 
chemical composition of the feedstock obtained from soils with different  
levels of nutrient abundance and contamination.

Other researchers discovered that the addition of biochar is effective  
in improving the physical, chemical, and biological properties of saline soils 
(ThomaS et al. 2013). However, some studies suggested a possible increase  
in soil salinity after biochar application, especially in high doses (SaiFuLLah 
et al. 2018). In the present study, the biochar addition did not change the EC 
value, regardless of the substance used (AC, AL, SL). Gondek and  
mierZWa-herSZTek (2016) obtained different results, but they applied biochars 
produced from pig manure and poultry litter, which were rich in alkaline 
elements.

As suggested by Lei and ZhanG (2013) as well as narTey and Zhao 
(2015), the beneficial effect of biochar on soil cationic sorption capacity 
should be attributed to biochar physical properties, mainly its porous struc-
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ture and specific surface area. In addition, this beneficial effect of biochar on 
soil cationic sorption capacity was confirmed by many authors (Larid et al. 
2010, FeLLeT et al. 2011, yuan et al. 2011). Our study revealed no significant 
changes in soil sorption capacity after adding biochar to the soil supplemented 
with various chemical substances. Gondek and mierZWa-herSZTek (2016)  
obtained a substantial increase in the soil CEC value after applying biochars 
from pig manure and poultry litter. However, it should be noted that these 
authors used in their study different materials for biochar production as well 
as higher doses thereof.

The mobility and bioavailability of heavy metals in the environment  
depends on both: their total concentration and their binding in the soil solid 
phase (acoSTa et al. 2011). The latter is modified by sorption, desorption, 
precipitation, and dissolution processes. As reported by park et al. (2011), 
uSman et al. (2013), and ahmad et al. (2014), immobilisation of heavy metals 
in biochar-supplemented soil may be attributed to several chemical process-
es, e.g. ion exchange, chemical sorption, and complexation on the biochar 
surface. park et al. (2011) and uSman et al. (2013) found that immobilisation 
of heavy metals can result from precipitation with biochar-originating mine- 
ral components, such as carbonates, silicates, and phosphates or from pro-
cesses caused by their application. Biochars can also limit the mobility  
of heavy metals by changing the redox potential, as reported by choppaLa  
et al. (2012). These authors focused on the effect of biochar addition to soil 
on transformations of Cr+6 into Cr+3. The relative contribution of individual 
mechanisms to immobilisation of heavy metals after biochar application  
remains unknown. However, some authors, such as houBen et al. (2013), 
have suggested that a change in soil pH is a decisive factor here.

The content of mobile trace elements is also determined by the soil pH, 
sorption capacity, and salt content. Other authors demonstrated that the 
addition of biochar to soil may decrease the mobility of trace elements  
by reducing soil acidification (Lucchini et al. 2014). Our study revealed dif-
ferent effects of biochar addition on the contents of analysed mobile trace 
elements, depending on substances applied to alter soil chemical properties 
(AC, AL, SL). The best effect on reducing the mobility of trace elements was 
produced by biochar added to the soil with acidifying substances. In the case 
of soil alkalisation and salinity, the effect of biochar application was less 
visible. Therefore, it should be emphasised that the limited mobility of trace 
elements in soil after its supplementation with biochar results not only from 
the formation of poorly soluble heavy metal compounds in soil through its 
reduced acidification. The highly porous biochar structure and the presence 
of functional groups certainly have an equally significant effect on heavy 
metal adsorption (Liu, ZhanG 2009).

In their previous studies, Gondek and mierZWa-herSZTek (2016) disco- 
vered a significant reduction in the mobility of Cu (28% to 69%), Cd (77%  
to 100%), Pb (94% to 99%), and Zn (15% to 97%) in soil, depending on the 
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biochar type and dose. Undoubtedly, this resulted from the significant  
increase in soil pH after biochar application. According to these authors,  
the reduced acidification resulted in the formation of poorly soluble heavy 
metal compounds in the soil. However, it should be noted that this was prob-
ably not only due to the alkalising effect of the materials applied. It should 
also be emphasised that the highly porous structure of biochar and the  
presence of functional groups certainly had a significant impact on the  
adsorption of heavy metals (Liu, ZhanG 2009). Similarly, FeLLeT et al. (2011) 
demonstrated that the application of biochar reduced the mobility  
of Cd, Pb, and Zn. Biochar application can cause transformations of easily 
accessible forms of heavy metals into chemically stable forms, which, in turn, 
reduces their mobility and bioavailability (ahmad et al. 2014a). As stated  
by park et al. (2011), uSman et al. (2013) and ahmad et al. (2014b), the immo- 
bilisation of heavy metals in the soil enriched with biochar can be attributed 
to several chemical processes, including ion exchange, chemical sorption,  
and surface complexation.

Gondek and mierZWa-herSZTek (2016) argued that the biochar addition  
to the soil did not cause any targeted changes of iron mobility; however,  
it significantly reduced the Mn mobility because of the deacidifying effect  
of materials used. According to aL-WaBeL et al. (2015), the addition of bio-
char to soil has effect on the content of both available iron and manganese.

As stated by aLaBoudi et al. (2019), the Cr mobility is increased after 
applying biochar to soil. According to these authors, the increasing trend  
of bioavailable Cr can be attributed to the increase of soil pH due to biochar 
addition. Cr(III) can be oxidised to Cr(VI) by manganese oxides and/or alka-
line resources (such as biochar) that increase soil pH above neutral. There-
fore, the Cr increase in soil is a function of increasing soil pH.

CONCLUSIONS

1. Regardless of the form of soil chemical degradation, the addition  
of biochar generally increased the soil pH value compared to treatments with 
no biochar added.

2. Regardless of the form of soil chemical degradation, the application  
of biochar did not alter the EC value under experimental conditions, and the 
contents of C and N resulted from their introduction together with biochar.

3. The biochar addition to soils subjected to various chemical degrada-
tions generally reduced the hydrolytic acidity but did not change the content 
of alkaline cations and soil sorption capacity.

4. The best effect on reducing the mobility of trace elements was achie- 
ved by adding biochar to the soil supplemented with acidifying substances. 
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