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AbstrAct

Air quality is closely related to people’s health and life. In addition to being directly affected  
by social activities and atmospheric emissions, the impacts of meteorological factors are also 
significant. Based on daily Air Quality Index (AQI) data and various meteorological parameters 
in the Yangtze River Delta (YRD), this paper summarized the spatiotemporal evolution charac-
teristics of AQI over YRD, and quantitatively analyzed the contribution of different meteorolog-
ical elements to air quality. We also evaluated different spatial interpolation methods to produce 
surface distribution of AQI, and noted that the Ordinary Kriging outperformed other methods. 
The spatial distribution of AQI in YRD showed seasonal and annual variations. However,  
the days with AQI over 100 (level ii) were mostly observed in winter. Generally, more severe air 
pollution was observed in the northern part of YRD than in the southern ones, for example the 
air quality of the Ningbo metropolitan area was the best, while in Hefei it was the worst. It was 
found that meteorological parameters have spatially varying effects on AQI. For instance, pres-
sure has a significant positive effect on AQI, and others showed negative correlations. We also 
predicted AQI by exploiting different machine learning-based models. Through model compari-
son, it was found that the Autoregressive Integrated Moving Average Model – ARIMA (0,1,2) 
has higher prediction accuracy for AQI than Multiple Linear Regression (MLR). The findings  
of this research can be used in future forecasting of air pollution, and also in air pollution con-
trolling programs. 
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INTRODUCTION

With the rapid development of economy, environmental problems have 
become more prominent. Among them, the atmospheric environment is closely 
related to human life, and urban air quality has become a growing concern 
(Chwil et al. 2015, Mo et al. 2020), especially in areas with high-density pop-
ulations (li et al. 2017). Air quality is the result of a change in atmospheric 
pollutants, which has adverse effects on the human body and ecological 
health (Nowak et al. 2018). Therefore, it is crucial to gain comprehensive and 
objective understanding of air quality, which can also provide a scientific basis 
for effective management and air pollution controlling programs.  
Meteorological conditions directly affect the dispersion, transportation,  
formation and deposition of atmospheric pollutants, which play an important 
role in air pollution. At present, many scholars conduct extensive research  
on air quality distribution and its relationship with meteorological factors. 
BaltaCi et al. (2019) found that considering meteorological parameters such 
as temperature, relative humidity, precipitation, and atmospheric circulation 
can hepl to explain better changes in air pollution. Based on an analysis  
of data obtained from 5 monitoring stations, hrishikesh and NageNdra (2019) 
explored the effects of the weather and wind speed on air pollutant concen-
trations in Chennai city. Spatiotemporal variation of the influence of wind  
on the distribution of fine particulate matter and its precursor gases was 
investigated by kariMiaN et al. (2019). Their results showed that the influ-
ence of wind on the concentration of particulate matter and its precursor 
gases varies spatially over BeijiNg, Borge et al. (2019) evaluated the impact 
of meteorological parameters (temperature, wind speed, humidity and precip-
itation) on air pollutants (C6H6, CO, NO2, NOx, O3, PM10, PM2.5) in Spain, and 
the results showed that the weather has a significant impact on PM10. Based 
on the mean sea level pressure and wind field data of ERAS (European Cen-
tre for Medium-Range Weather Forecasts), adaMe et al. (2019) report the 
evolution of tropospheric NO2 over the south-east of the Iberian Peninsula 
from 2005 to 2017. adaes and Pires (2019) used Artificial Neural Networks 
(ANN) defined by Genetic Algorithms (GA) to evaluate the influence of meteoro- 
logical variables and PM10 on PM2.5 concentrations in Istanbul. FeNeCh et al. 
(2019) examined the meteorological drivers resulting in concurrent, high  
levels of ozone and PM2.5 during two five-day air pollution episodes in 2006 
(1st - 5th July and 18th - 22nd July) in the UK. The results show that both ep-
isodes were driven by anticyclonic conditions with light easterly and south 
easterly winds and high temperatures. li et al. (2017) found that precursor 
gases followed by favorable meteorological conditions have a direct effect  
on concentrations of ozone in Hangzhou. li et al. (2018) studied three-dimen-
sional distributions of ozone and PM2.5 concentrations in Shanghai, and 
found that temperature, relative humidity and atmospheric pressure are the 
major parameters that affect the variations of ozone and PM2.5. ZhaNg et al. 
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(2018) discussed the spatial-temporal distribution characteristics of PM2.5  
in Anhui, and investigated the key influencing factors of PM2.5 concentra-
tions. They found that the population, urbanization rate, annual average 
temperature, unit Gross Domestic Product (GDP) power consumption and 
numbers of treatment facilities for industrial waste gas play a fundamental 
role in reducing PM2.5 concentrations.

The rapid development of industrialization and transportation has 
strengthen the relationship between cities, and air quality reflects regional 
characteristics. Therefore, combining Air Quality Index (AQI) with urban 
agglomeration creates a trend in the expolration of the characteristics of air 
quality (ZheNg et al. 2018). This research focuses on the new Yangtze River 
Delta (YRD) urban agglomeration, which covers three provinces and a city 
(Jiangsu, Zhejiang, Anhui, Shanghai). For such a large geographical area  
as YRD, which has significant population density (over 150 million) with 
rapid urbanization and economic growth, exploring air quality conditions and 
the influencing parameters are the essential for air pollution controlling pro-
grams. In this research, we implemented a statistical analysis to investigate 
the spatial and temporal variation characteristics of air pollution and its 
correlation with different meteorological parameters in the past five years. 
Moreover, we proposed a statistical model to predict AQI over YRD.

MATERIALS AND METHODS

Study area
The Yangtze River Delta is an alluvial plain, covering a land area  

of 211,700 square kilometers (almost 2.2% of China’s total land territory), 
where there are 26 cities. The YRD urban agglomeration (one core and five 
circles) includes Nanjing Metropolitan Circle, Suzhou-Wuxi-Changzhou  
Metropolitan area, Hangzhou Metropolitan Circle, Ningbo Metropolitan  
Circle, Hefei Metropolitan Circle, and Shanghai Core Area. Due to the 
wealth of regional resources and high energy consumption, various atmo-
spheric pollutants at different concentrations are observed over the area, 
causing severe environmental problems (waNg et al. 2018).

According to the Environmental Protection Website of the People’s  
Republic of China, there are 89 monitoring stations in the cities covered  
by the “one core and five circles” in YRD. Figure 1 illustrates the study area 
(one core and five circles) and the location of 89 air pollution monitoring sta-
tions. 

ARIMA model
The Autoregressive Moving Average – ARMA (p, q) model is currently 

the most commonly used stationary time series model (Eq. 1). This model  
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is a mix of the Autoregressive model of order p and the moving average mod-
el of order q. 

(1)
In the above equation,  denotes the value of the time series Y at time 

step t. et, et–1, … et–q stand for the model errors, Φ1, Φ2, … Φp are the autore-
gressive coefficients and Θ1, Θ2, … Θq, are moving average coefficients.  
If the d-order difference (Wt = ∇dYt) of a time series {Yt} is a stationary 
ARMA process, then {Yt} is called the Autoregressive Integrated Moving  
Average Model (ARIMA). In this study, we used the IBM SPSS Statistics 21 
software to run the model.

As mentioned earlier, the ARIMA is a stationary time series model. 
However, the AQI time series is a non-stationary sequence. After the first- 
-order difference was achieved, the AQI sequence was stabilized and the unit 
root test was performed. Therefore, the order of our proposed ARIMA model 
is d=1. In order to find the optimal parameters (p, q), the Auto-correlation 
function (ACF) map and the Partial auto-correlation function (PACF) map 
are combined with the Akaike minimum information criterion (AIC) and the 
Schwarz-Bayes criterion (BIC). From the characteristics of the ACF and 
PACF of the difference sequence, the autocorrelation coefficients of the five 

Fig. 1. Spatial distribution of air pollution monitoring stations in one core (Shanghai)  
and 5 circles
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cities are censored, and the partial autocorrelation coefficients exhibit tailing. 
After trial and error and model screening, AR (p=0) and MA (q=2) were  
selected for the difference sequence. 

Spatial interpolation
The best way to convert point-scale data to polygon-scale information  

is spatial interpolation. Spatial interpolation includes the evaluation of inter-
polation accuracy and the selection of interpolation methods. To perform 
spatial interpolation of our data, we used ArcGIS software to compare  
the accuracy of Ordinary Kriging (OK), Inverse Distance Weighted (IDW) 
and Global Polynomial Interpolation (GPI) – Table 1. The Kriging method 
provides an unbiased optimal estimation of the value of variables in a finite 
region, considering not only the distance, but also the spatial distribution  
of the known sample points and the spatial azimuth relationship with  
the unknown sample points through the variation function and structure 
analysis. The Kriging interpolation equation can be expressed as:

 (2)

where: Z(X0) – value of an unknown point Z(Xi) – value of the known points 
around the unknown point, li – weight of ithe-known sample point with  
respect to its distance to unknown sample point, and n – number of known 
sample points.

The inverse distance weighted interpolation equation can be expressed as:

 (3)

where: ν – estimated value, N – number of sample points, dj – the distance  
between the interpolation point and the ithe-known sample point, p – speci-
fied power.

The indicators for evaluating interpolation accuracy are Mean Standardi- 
zed Error (MSE) and Root Mean Square Error (RMSE). 

 
(4)

 

(5)

where: n – number of air monitoring stations, Zi – known as the station 
point of AQI, Zj – interpolated point of AQI.
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RESULTS AND DISCUSSIONS

Spatial and temporal distribution characteristics of air quality
Comparison of air quality and air pollutants in different time periods

Figure 2 illustrates the AQI level distribution for different regions  
of the YRD urban agglomeration. In total, there are 1,815 days with valid 

data. During our study period (5 years), the number of air pollution days  
in Shanghai is 301 days, Suzhou-Wuxi-Changzhou Metropolitan area – 393 
days, Nanjing Metropolitan Circle – 493 days, Hangzhou Metropolitan Circle 
– 324 days, Ningbo metropolitan circle – 120 days, and Hefei Metropolitan 
Circle – 466 days, accounting for the total number of samples of the corre-
sponding regions at 16.58%, 21.70%, 27.18%, 17.89%, 6.63%, 25.67%.  
In the number of heavy pollution days above level III, Nanjing Metropolitan 
Circle and Hefei Metropolitan Circle have most of such days, followed  
by Suzhou-Wuxi-Changzhou Metropolitan Circle, Hangzhou Metropolitan 
Circle and Shanghai, with Ningbo Metropolitan Circle having the fewest 
such days.

The box plot of the temporal (monthly) variations of various pollutants 
in YRD is shown in Figure 3. As demonstrated, PM2.5 was the major pollu- 
tant from November to March. However, in more than 30% of summer days 
(April-September) O3 was the main pollutant due to more intensive photo-
chemical reactions because of high temperature and solar radiation (kalaBokas 
et al. 2020). SO2 and NO2 had the lowest concentrations, which may be due 
to their role in the formation of secondary particulate matter and ozone 
(MaNju et al. 2018). 

Because PM2.5 and ozone were the major pollutants during our study 
period, we investigated the temporal trend between AQI and them (Figure 4). 
The results show that contrary to ozone, which showed low correlation with 

Fig. 2. AQI level distribution in different regions of YRD
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AQI, the trend of AQI is consistent with that of PM2.5. This indicates PM2.5  
is the major pollutant, which has strong influence on air quality of YRD  
region (Fu et al. 2018, guo et al. 2019). 

Fig. 3. Box plots of percentage of days with different air pollutants in the urban agglomeration 
in the YRD from 2014 to 2018. The line in the box represents the median, the upper and lower 
lines of the box represent the first percentile (Q1) and the third percentile (Q3), and the upper 

and lower whisker values represent the maximum and minimum values, respectively

Fig. 4. Temporal correlation analysis between AQI and PM2.5, O3 in YRD from 2014 to 2018
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Time distribution features
Considering temperature variations, we defined four seasons as spring 

(10-22°C, April-May), summer (>22°C, June-September), autumn (22-10°C, 
October-November) and winter (<10°C, December-March). Monthly variation 
of AQI in the six regions of YRD is illustrated in Figure 5. It shows that the 
monthly variations of AQI develops a similar trend for the different regions, 
with the highest AQI in winter and the lowest one in summer. In winter,  
the atmospheric structure is stable and the temperature inversion under the 
boundary layer happens frequently. These conditions, accompanied by low 
precipitation, are favorable to the accumulation of pollutants near the earth’s 
surface. Consequently, air pollutant concentrations are high in winter (jassiM 
et al. 2018). Conversely, in summer, the research area is affected by the 
southeast monsoon from the Pacific Ocean and the southwest monsoon from 
the Indian Ocean, which bring considerable rainfall. Therefore, the frequently 
rainy and windy weather is conducive to the diffusion of pollutants.  

Fig. 5. Monthly variations of the air quality index (AQI) in YRD
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At the same time, as the leaf area increases significantly, moist leaves  
in humid air are the best at the absorption and retention of particulate mat-
ter (Qi et al. 2019). 

Spatial differentiation features
Due to the fact that the AQI value of some areas in Anhui has only  

been monitored since 2015, in order to ensure the consistency of the data,  
we produced the surface distribution of AQI based on the air monitoring data 
in 26 cities in YRD during a four-year period from 2015 to 2018. Data  
in Table 1 prove that the Ordinary Kriging (OK) method showed better per-

formance with RMSE = 1 than inverse distance weight interpolation (IDW) 
or global polynomial interpolation (GPI).

Figure 6 shows the seasonal surface distribution of AQI from 2015  
to 2018 using OK method. Generally speaking, the AQI is higher in the 
northern regions of YRD than other regions. In YRD, Ningbo Metropolitan 
Circle had the lowest AQI (better air quality) followed by Shanghai,  
Hangzhou, Suzhou, Nanjing and Hefei respectively. In winter, AQI has  
an annually decreasing trend and the maximum value appeared in northern 
regions (Suzhou-Wuxi-Changzhou) in 2015 (AQI = 113). In spring, the worst 
air quality was observed in 2017. This can be explained by the severe storms 
(due to low humidity) happened in 2017 (huo et al. 2019). Generally speak-
ing, the YRD region is mostly affected by the natural dusts in the middle 

Table 1
Comparison of interpolation results

Month OK
(MSE)

OK
(RMSE)

IDW
(MSE)

IDW
(RMSE)

GPI
(MSE)

GPI
(RMSE)

January 2015
April 2015
July 2015
October 2015
January 2016
April 2016
July 2016
October 2016
January 2017
April 2017
July 2017
October 2017
January 2018
April 2018
July 2018
October 2018

0.050
0.031
0.006
-0.02
0.103
0.018
0.043
0.008
0.041
0.120
0.061
0.033
-0.02
0.065
0.063
-0.01

1.007
1.094
0.865
1.097
1.457
0.976
1.576
0.920
0.843
0.910
1.132
0.941
0.947
0.942
1.000
0.975

3.651
1.383
1.170
1.014
1.136
0.453
1.794
0.585
-0.80
1.346
2.650
0.392
3.196
2.142
3.153
0.273

14.50
8.782
8.887
8.105
9.165
7.600
10.82
5.369
12.00
6.733
16.33
4.211
12.43
10.28
12.45
4.335

0.737
0.247
0.242
0.192
0.027
0.153
0.482
0.125
-0.10
0.341
0.604
0.103
0.454
0.428
0.578
0.026

17.70
11.07
10.07
8.545
8.086
8.098
14.38
5.026
9.404
7.631
17.17
4.273
11.64
11.59
13.66
3.545

Note: OK –the Ordinary Kriging method, IDW – inverse distance weight interpolation,  
GPI – global polynomial interpolation, RMSE – Root Mean Square Error, MSE – Mean Absolute 
Error.
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Fig. 6. Spatiotemporal distribution of AQI over YRD
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and upper part of boundary layer that are transported from northern regions 
of YRD and cover the PM2.5. Consequently, PM2.5 concentrations increase and 
sever pollution can last for several days. In summer and autumn from 2015 
to 2018, in inland cities (Suzhou-Wuxi-Changzhou, Hefei and Nanjing) AQI 
values showed an increasing trend. In spite of decreasing in the concentra-
tions of pollutants such as particulate matter (because of the China air pol-
lution controlling policy), the concentrations of O3 has been rising and ozone 
is becoming the major pollutant in YRD during summer and autumn (huaNg 
et al. 2019). Therefore to improve the air quality of this region, more  
attempts should be done to reduce O3 concentrations for the remediation of 
air pollution. 

Relationship between air quality and meteorological elements
Correlation between AQI and meteorological parameters

We studied the trend of AQI and different meteorological parameters 
during our study period (Figure 7). As illustrated, the trends of air pressure 

Fig. 7. Relationships between AQI and different meteorological parameters from 2014 to 2018
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and AQI are remarkably consistent, indicating that pressure has a signifi-
cant positive effect on the air quality in these cities. There is a significant 
negative correlation between the daily variation of AQI and the average 
temperature in 5 representative cities, from which it can be inferred that 
temperature has a positive effect on the air quality in the YRD region.  
This is because the diffusion of atmospheric pollutants in the vertical direc-
tion mainly depends on the vertical distribution of temperature. During our 
study period, Ningbo achieved the highest correlation coefficient (r=-0.428), 
followed by Hefei, Hangzhou, Nanjing and Shanghai. 

Considering the effect of wind on air pollutant concentrations in YRD, 
we can classify winds into two categories: southeasterly and northwesterly 
ones. Northwesterly winds prevail in winter (dry season), with an average 
wind speed of 2.43 m s-1, causing heavy dust pollution and consequently  
being negatively correlated with air quality. It can be inferred that humidity 
is one of the major parameters that influence air pollutants concentrations. 
Southeasterly winds mostly blow in summer and have lower average wind 
speed than northwesterly ones (almost 2 m s-1) (kariMiaN et al. 2019). Howe- 
ver, they have a positive impact on air quality by dispersing and removing 
pollutants. The correlation between precipitation and AQI is negative  
(the correlation coefficient is in the range of -0.284-0.210), which implicates 
that the air pollution in YRD contains water-soluble pollutants that can  
be washed away by rain. Moreover, the negative correlation between AQI 
and RH (-0.161 to -0.326) indicates that relative humidity is unfavorable  
for the formation of air pollution. There is no clear correlation between  
the duration of sunshine and AQI. This may be explained by the fact that, 
although sunshine accelerates the dilution of pollutants by increasing the 
boundary layer height, it affects the formation of secondary particulate mat-
ter by photochemical reactions (kariMiaN et al. 2017). It is worth mentioning 
that as each of these parameters is not the sole parameter governing concen-
trations of pollutants, the correlation coefficients are not high.

Prediction of AQI value in YRD
Figure 8 shows scatter plots of observed and predicted AQI using ARI-

MA (0,1,2) and MLR respectively. It proves that the ARIMA model showed 
better performance with overall RMSE=27.991 and R2=0.45 than MLR 
(RMSE=33.414 and R2=0.2707). There is reasonable agreement between 
ground truth and predicted values, and our ARIMA model is able to explain 
over 50% (R2=0.51) of the variability in observed AQI. However, for different 
metropolitan areas, the slopes of linear regression are less than 1 and inter-
cepts are positive. This illustrates a tendency of the model to underestimate 
and overestimate high and low AQI values, respectively.

Figure 9 illustrates the averaged surface distribution of ARIMA predicted 
and observed AQI from 11 July 2016 to 20 July 2016. Note that this period 
was selected randomly and was excluded from training datasets. Generally, 
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the predicted distribution pattern follows the observed one. However, same 
as the trend of the test dataset, our predicted surface shows a tendency towards 
underestimation.

Fig. 8. Scatter plots of observed and predicted AQI by the ARIMA – a, the MLR – b

Fig. 9. Predicted AQI using ARIMA (0,1,2) and surface observed AQI
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CONCLUSIONS

In this paper, we studied AQI in the new YRD region composed of one 
core and five metropolitan areas. This is one of the earliest studies that have 
investigated air quality in YRD on such a large scale (spatially and tempo-
rally). Comparing different spatial interpolation methods, we found that 
Kriging outperforms other models (IDW, polynomial) in producing surface 
distribution of AQI. The results showed that the spatial distribution of AQI 
varied seasonally and except for winter, the AQI level did not exceed level II 
in almost the entire YRD area. Moreover, AQI showed a declining trend  
as an indicator of the air pollution controlling programs in China. Among all 
metropolitan cities in YRD, Ningbo had the best air quality while Hefei was 
the worst. Generally, the southern part of YRD had better air quality than 
the northern part, which could be explained by larger population density  
in the northern part as well as the distance from the sea. We also found that 
the winds blowing to YRD have opposite effects on air quality. Southeasterly 
winds (0.5-8.3 m s-1) can improve the air quality, while northwesterly winds 
in dry season have negative impacts, causing heavy dust pollution in YRD. 
Our comparison of the models showed that the ARIMA (0,1,2) model has 
higher prediction accuracy than MLR, which is more suitable for AQI predic-
tion over YRD. Future air pollution studies in this area should consider 
models which take into account spatial non-stationarity. Future work will 
deal with explanatory variables and include satellite-based data to detect air 
pollution emission sources in YRD for forecasting air pollutant concentra-
tions.
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