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AbstrAct

Being responsible for severe social and health issues, micronutrient malnutrition gives rise  
to serious apprehension throughout the world. Nutrition is the key factor in any strategy designed 
to reduce the burden of diseases globally. More than 3 billion people around the world suffer 
from micronutrient deficiency due to the consumption of poor-quality food. The green revolution 
fulfilled the need for greater yield, but the quality of the developed crops suffered. Today, poor 
people predominantly are suffering from micronutrient malnutrition as they cannot afford  
dietary supplementation due to poverty. Brain development and other body mechanisms and 
functions are critically affected due to the consumption of Zn and Fe deficient diet. Hence,  
the production of biofortified food crops is the need of time to solve the problem of micronutrient 
deficiency on a sustainable basis. Biofortification of commonly used food crops will offer  
the simplest solution to complex nutritional disorders. So, experimentation and testing should 
be done at both national and international levels to improve food quality and quantity.  
This review discusses different biofortification strategies that are employed to counteract  
several nutrient deficiencies. The role of several international agencies in this direction has also 
been discussed. This may help researchers to have an overview of the approaches in which more 
advancement is required. We emphasize that more efforts to modify the existing genomes using 
molecular techniques can open new pathways in the field of biofortification. 
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INTRODUCTION

Good nutrition is the key to good health (Magni et al. 2017), and  
it is heavily dependent on sustainable agriculture (WHO 2018). The quest for 
quality food has risen from the fact that the world’s population is increasing 
constantly (United Nations 2017), and is expected to be 9.8 billion by the end  
of 2050 (Kaneda et al. 2015). Unfortunately, for producing more food,  
the quality factor has been ignored. Nowadays, undernourishment is a signifi- 
cant problem (Webb et al. 2018). Micronutrient deficiencies causing various 
nutritional disorders have become a global issue (Haddad et al. 2016) and 
have gained significant attention from scientists from almost all the sectors, 
including health, nutrition, economic, tourism, and agriculture sector (Feng 
et al. 2019). These deficiencies are prevalent due to regular inadequacies  
in diets, or dependence of people on a single staple food crop, especially on 
cereals (datta, Vitolins 2016). These food insecurities are more challenging 
in developing and under-developed countries (Pérez-escaMilla 2017) mainly 
due to poor lifestyle and diets (gaKidou et al. 2017). To overcome endemic 
nutritional diseases, commonly used food crops are fortified or some other 
supplement measures are taken into account (bouis et al. 2017). 

The addition of missing nutrients to target food to counteract their defi-
ciency is called fortification (bouis et al. 2011). Although fortification of sta-
ple food crops is the need of the hour, it is rather expensive, mostly available 
in urban areas (bouis, WelcH 2010) and is hardly affordable by poor popula-
tions (gilligan 2012). Supplementation and fortification can only work best 
in centralized urban areas, where infrastructure is good enough to support 
such programs. However, supplementation can easily lead to overdosing and 
may cause diseases (Pérez-Massot et al. 2013). Additionally, there are con-
cerns regarding technologicy, costs and safety considerations (sHarMa et al. 
2017). The biofortification of food crops is a promising solution (connorton, 
balK 2019) as it is strongly related to the improvement in food production 
systems (rani et al. 2018). 

For human health disorders, prophylactic measures are much better 
than numerous rounds of remedial measures. There is an exigent requisite 
for the attainment of goals set in the public health sphere, both nationally 
and internationally, and relevant policies should be implemented, especially 
in developing countries. Hence, this review will mainly focus on Zn and Fe 
deficiency symptoms in plants and humans, health problems created  
by hidden hunger, and the role of modern agriculture to produce the quality 
crops for reducing the problem of malnutrition. 
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BARRIERS FOR THE ACCUMULATION  
OF MICRONUTRIENTS IN PLANTS

One of major obstacles to biofortification is the lack of knowledge about 
the loading of minerals to seeds, and uncertainties about the genes and path-
ways to target for modifications (Waters, sanKaran 2011). Additionally,  
climate change has resulted in significant reduction in nutrients accumu- 
lated in plants (Milius 2017). 

There are several barriers that need to be overcome for the enhanced 
accumulation of more micronutrients in the edible portion of plants (Figure 1). 
These are controlled by homeostasis, which has an important role in the regu- 
lation of metal absorption, translocation, and redistribution in the plant body 
(KulcHesKi et al. 2015). 

The rhizosphere creates one of the biggest barriers. Essentially, soil  
is the main supplier of micronutrients to plants and hence their bioavailability 
is influenced by various soil and environmental factors (raWat et al. 2019). 

Plant roots uptake nutrients from the soil and transport them to aerial 
plant parts. Before entering the plants, these nutrients have to pass through 
the concentric layers of epidermis, root cortex, and endodermis. Differentia-
tion of endodermis and its developmental plasticity functions as barriers to 
nutrient translocation in plants (barberon 2017).

Absorption mechanisms (i.e. ion channels and transporters) present  
in the plasma membrane of root cells also act as a barrier for the movement 
of nutrients to plants. If they are not active and specific, then they hinder 

Fig. 1. Barriers to the accumulation of micronutrients in edible plant parts
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the entrance of micronutrients into the apoplasm of root cells, and thus their 
translocation to the plants is reduced (HosMani et al. 2013, KaMiya et al. 
2015, doblas et al. 2017, li et al. 2017). 

ENRICHING CROPS WITH VITAMINS  
AND NUTRACEUTICALS

Vitamin and nutritional deficiencies can be treated by biofortifying local 
varieties of food crops, and this solution can greatly reduce the burden  
of vitamin deficiencies. Thus, the demand for biofortified foods supplemented 
with various vitamins, such as A, C, E and phytochemicals called nutraceu-
ticals, has increased to a significant extent due to their importance in pre-
venting diseases and malnutrition (lobo et al. 2010). For biofortification  
of food crops with vitamins and nutraceuticals, various methods are being 
used, such as agronomical methods, conventional breeding, and transgenic 
techniques (leVine et al. 1995, cHen et al. 2003, storozHenKo et al. 2007,  
zHu et al. 2007, aluru et al. 2008, cong et al. 2009, Wang et al. 2014,  
blancquaert et al. 2015, decourcelle et al. 2015,). Selection, introduction, 
and hybridization are the most popular methods in conventional breeding 
used for the development of nutraceuticals in food crops. Conventional breed-
ing relies on the presence of variation in vitamins in the germplasm that  
is sexually compatible (strobbe, Van der straeten 2017). Various researchers 
have identified the nutraceutical sources, and have transferred them in high 
yielding cultivars by using traditional breeding methods. In traditional  
methods, intrinsic properties of specific food crops are used, but this  
approach takes a relatively long time. Due to some technical disadvantages 
in conventional breeding methods, transgenic approaches are now being 
widely used for the bioaccumulation of nutraceuticals in food crops. Trans-
genic approaches are rapid and have direct applicability for elite cultivars. 
This technique helps the transfer of desired genes responsible for delivering 
nutraceuticals to the edible portion of food crops (garg et al. 2018). Meta- 
bolic engineering by utilizing the GM technology helps to introduce multiple 
desired genes that in turn directly influence the metabolism of a plant  
towards greater accumulation of elements. This technology is not dependent 
on the gene sources based on sexual compatibility, and the genetic elements 
from the diversified pools can also be utilized.

ENRICHING CROPS WITH IODINE AND SELENIUM

Selenium is a microelement that is required in smaller amounts, but  
it can easily reach the toxicity level. Almost 15% population across the globe 
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is affected by the selenium deficiency in foods. Currently, the trend to bio- 
fortify crops with Se is less strong than Zn and Fe biofortification. As cereals 
and vegetables are widely consumed on a daily basis throughout the world, 
biofortification of these crops with Se and other micronutrients can offer  
a great contribution to the alleviation of these deficiencies. Soil fertilization 
with Se is considered an important aspect of increasing the Se content (cHen 
et al. 2002, Fang et al. 2008, ros et al. 2016). In Finland, the addition  
of Se in fertilizers has been manadatory since 1984, and at present all ferti- 
lizers in that country are supplied with 10 mg S kg-1 (WHite et al. 2007).  
Additionally, transgenic approaches have been successful in enhancing  
the bioaccumulation of Se in edible plant parts (leduc et al. 2004). However, 
it is extremely important to prevent toxicity levels of Se in food crops,  
as slightly elevated concentrations in a human body can evoke various  
problems.

In many countries worldwide, iodine deficiency is a serious concern  
for human health. Although Sub-Saharan African and South Asian countries 
are mostly suffering from the lower intake of iodine, this problem also exists 
in developed countries, including Australia, the USA, and Europe. About  
2 billion people are affected by iodine deficiency. Iodine can be supplied  
to edible parts of plants by foliar or soil application. In addition to the ferti- 
lizer’s application, iodine biofortification can also be achieved by transgenic 
approaches as an alternative, where the genome analysis, metabolomics, 
whole-genome sequencing, and DNA sequencing techniques are employed 
(landini et al. 2012, Smoleń et al. 2014). Both Se and I are required  
for maintaining the thyroid health; thus, biofortification is worthwhile our 
attention as a solution to this problem (Smoleń et al. 2014, 2016).

ROLE OF MODERN AGRICULTURE

At present, it is agreed that researchers in the fields of nutrition and 
agriculture should work together to make the greatest impact to reduce  
malnutrition (dubocK 2017). Continued improvement in nutritional quality 
and yield of agricultural crops will constitute a basic step towards nutritional 
and food security for the growing world population (goicoecHea, antolín 
2017). 

Earlier, the green revolution has significantly increased the production 
of grain crops, but it has also contributed to a greater proportion of under-
nourished people all over the world (Smoleń et al. 2016). An increase in yield 
has caused a dilution effect, with lower levels of mineral nutrients in grains 
(sHeWry et al. 2016). 

However, there have been significant advances in the past few years, 
owing to modern agricultural techniques, regarding yield improvement and 
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crop quality (sHaH, Wu 2019). There is great potential to mitigate the wide-
spread problem of Fe and Zn deficiency in human beings by improving  
the Fe and Zn content in grains (PHattaraKul et al. 2012) – Figure 2.

By using modern agricultural practices, biofortified seeds have been  
produced, which are more useful for crop production, are more resistant  
to stresses and diseases, and produce more uniform yields (ros et al. 2016). 
The economic situation is critical for the fortification of foods during the pro-
cessing steps; however, it is difficult and even unnecessary for large rural 
populations to consume processed foods. Moreover, it should be taken into 
account that most of developing countries lack viable food processing indus-
tries and proper product distribution channels, which is a consequence  
of economic shortages and the unwillingness of authorities towards this aspect.

Based on the above considerations, it can be concluded that a long-term 
solution for large rural populations may include ensuring their access  
to diversified diet. Thus, the alternative biofortification approach is much 
promising because it targets mainly economically disadvantageous large  
rural populations of the developing world. To date, biofortified food crops 
have been successfully used in different parts of the world (Haas et al. 2005, 
garg et al. 2018). 

Fig. 2. Benefits of using Zn and Fe enriched seeds
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BIOFORTIFICATION BY APPLICATION  
OF PLANT GROWTH PROMOTING RHIZOBACTERIA

Complex microbial community is developed when plants are grown  
under field conditions (lundberg et al. 2012). A well-regulated and structural 
community of microorganisms in the soil is always associated with plants 
(sMitH et al. 2017). Bacteria are the basic elements and have a strong asso-
ciation with all plant structures (berg et al. 2015). Plants exert beneficial 
effects on rhizobacteria by producing root exudates of many compositions 
(zHang et al. 2017). The use of plant growth-promoting rhizobacteria  
is an important bio-revolution to increase the bioavailability of nutrients  
to the plants (tiMMusK et al. 2017). 

Soils with dynamic ecologies of microbes and more organic matter have 
low requirements for fertilizers than the soils which are conventionally man-
aged (bender et al. 2016). Interactions between plants and microbes have  
a direct role in the improvement of plant nutrition by increasing the solu- 
bility and bioavailability of plant nutrients and thus, improves the nutrient 
contents in edible plant portions (ManiKandan, subraManian 2016). 

Many microbial strains have been reported to increase the solubility and 
bioavailability of Zn and Fe with special reference to the improvement in 
plant yield and quality in various crops (saHa et al. 2016). 

Micronutrient bioavailability in the soil is greatly affected by the soil 
physio-chemical characteristics, which can be modified by the plant microbial 
interactions (ray, baniK 2016). Inoculation with a combination of strains  
results in better effects than inoculation with individual rhizobacterial 
strain. Additionally, the application of Zn solubilizing PGPR also increases 
the production of siderophores, solubilization of phosphorus, nitrogen fixa-
tion, tolerance against diseases (andreote, silVa 2017) and protection 
against abiotic and biotic stresses (otHMan et al. 2017). 

BIOFORTIFICATION BY GENETIC MODIFICATION 
APPROACH

The transgenic approach is a promising technique for the production  
of biofortified crops (bouis et al. 2017) and novel genetic information  
is directly introduced into the plant genome. It is a better alternative  
to develop biofortified crops when there is no genetic variation in the nutri-
tional contents of genotypes (brincH-Pedersen et al. 2007). 

Especially when a specific micronutrient is not naturally present  
in the crop, then the transgenic approach is one of the effective feasible  
options for the genetic fortification of that crop with particular nutrient 
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(Pérez-Massot et al. 2013). Gene functions are identified and characterized 
and then they are utilized to engineer the plant`s metabolism to reduce  
anti-nutrients factors and to increase the concentration of promoter sub-
stances and to increase the concentration of micronutrients by making them 
more bio-available (cHristou, tWyMan 2004). 

Additionally, genetic modifications can be used to target the redistribu-
tion of micronutrients in between the tissues to increase their concentration 
in the edible parts of the plant. Even selected pathways can be reconstructed 
to improve the efficiency of specific biochemical processes in the edible parts 
(HeFFeron 2016).

Though the transgenic approach involves more efforts, investment and 
time, but in the long turn, this is one of the most sustainable approaches 
(HeFFeron 2016). Transgenic wheat, rice (trijatMiKo et al. 2016) barley, 
maize, sorghum, legumes and pulses, common beans, lupines, vegetables, 
oilseeds, fruits and even, transgenic fodder have been produced (garg et al. 
2018). 

Crops are genetically modified after breeding to improve the absorption 
capacity and nutritional status of the grains (bouis et al. 2003). Modern  
advancement in the discipline of plant breeding has become the root cause  
to reduce the malnutrition caused by the lack of genetic diversity in micro-
nutrients (trijatMiKo et al. 2016). QTL mapping for seed mineral concentra-
tions also serves as a master regulator for the fulfillment of seed micro- 
nutrient demands. The manipulation of such regulators could be used  
to ideally accomplish all the steps at the same time (li et al. 2018). 

BIOFORTIFICATION BY AGRONOMIC PRACTICES

Biofortification is a long journey from soil to grains (HeFFeron 2015).  
In the food chain, plants are an initial link, so enhanced uptake of minerals 
from soil to plant parts is essential for the achievement of biofortification 
(basu 2016). 

By growing high yielding varieties, the micronutrient content of crops 
becomes decreased due to more intensive mining of nutrients from the soil. 
So, the replenishment of nutrients by fertilizer application and by manage-
ment practices is essential (jones, de-brauW 2015). Therefore, successful 
biofortification is strongly dependent on the external application of micronu-
trients to the soil-plant system (diMKPa, bindraban 2016).

Application of Zn and Fe fertilizers is a useful and quick solution to pro-
duce biofortified food crops, and this approach can be easily implemented  
in developing countries (caKMaK, KutMan 2018). Mostly Zn deficiency in wheat 
is due to the shortage of soil moisture because of irregular and scanty rain-
falls, so moisture levels shouod be adjusted properly (KariM, raHMan 2015). 
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The type of fertilizer, method of application, packaging, and plant develop- 
mental stages at which fertilizer is applied are also important (jones,  
de-brauW 2015). Additionally, the cropping system, intercropping, and crop 
rotations increase the crop yield and improve quality (zuo et al. 2000).  
Biofortification can be achieved by seed treatment and by foliar application 
of fertilizers (reHMan et al. 2016). 

Micronutrients can also be applied along with the soil amendment  
substances to increase crop yield and nutritional quality (VanlauWe et al. 
2015). Fertilizers along with organic matter significantly improve micro- 
nutrient content in soil and their bioavailability (tHilaKaratHna, raizada 
2015). The application of Zn fertilizer along with green manure has improved 
grain Zn content and yield of Basmati rice in India (Pooniy, sHiVay 2013). 
Foliar application is a useful agronomic biofortification strategy that provides 
mineral fertilizers in the most appropriate, phyto-available form (laWson  
et al. 2015). However, it is not a feasible approach in windy and rainy areas 
(garcía-bañuelos et al. 2014). 

There is not a single approach that could invariable produce superior 
results, hence an integrated micronutrient management system and supply 
chain approach as a whole are required to meet the demand of attaining 
higher Fe and Zn content in edible portions of plants (zHang et al. 2017). 

BIOFORTIFICATION USING NANOTECHNOLOGY

Nanotechnology is a field offering numerous scientific applications. 
Among several advancements in technology, nanotechnology seems to be a prom-
ising direction in agriculture (eleMiKe et al. 2019). The formulation of ferti- 
lizers has a strong impact on the bioavailability of micronutrients. Depend-
ing on the type and size of applied fertilizers, there can be neutral, positive 
or negative interactions, thus affecting the nutrient use efficiency and the yield 
(tHaKur et al. 2018). 

The micronutrient use efficiency of commercial fertilizers ranges between 
just 2.5% to 5%. This is due to their relative stabilization in soil, less inten-
sive penetration into the leaf surface, and low mobility within plant parts. 
Conventional fertilizers are unable to synchronize the release of micronutri-
ents from plant fertilizing sources (Table 1).

By decreasing the particle size of applied fertilizers, more nutrients can 
be be uptaken by plant roots, as there are more reaction sites, in addition  
to which nanoparticles are in a continuous state of motion called “the Brownian 
motion” (jiang et al. 2018). Thus, biofortification through nanotechnology 
offers opportunities for boosting agricultural productivity and enhancing food 
quality as well as nutritional value in an eco-friendly manner. 
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HARVEST PLUS AND OTHER INTERNATIONAL 
ORGANIZATIONS WORKING FOR BIOFORTIFICATION

HarvestPlus is a leader in its global efforts to develop and disseminate 
quality staple food crops. It is an interdisciplinary program active in over  
40 countries and carried out in collaboration with both public and private 
sectors, including such organizations as the International Center for Tropical 
Agriculture (CIAT), International Rice Research Institute (IRRI), National 
Agricultural Research and Extension Systems – NARES andersson et al. 
2017. Consultative Group on International Agriculture Research (CGIAR) 
and the World Health Organization have included the programs in their 
main goals to develop high yielding and nutritional rich biofortified crops. 
Collaborative international interdisciplinary efforts are required to solve  
the problem of malnutrition (Plus 2012). To reduce the travel cost, signifi-
cant global and regional meetings could be organized as satellite-boradcast 
meetings, which will also serve as an outreach component. 

CONCLUSIONS

Currently, a direct pathway towards better nutrition is needed to gene- 
rate considerable economic benefits. Biofortification is a lasting and self- 
-sustaining solution. There is a dire need to ensure food security, ensuring 
nutritional advocacy and responding to dietary recommendations. Thus, 
multi-faceted plans should be implemented to address the problem of malnu-
trition in a synchronized manner. The persistent burden of malnutrition 
should be submitted to intensive research by dedicated scientists from  
many disciplines. Policy-makers and researchers should define appropriate 

Table 1
RDA Values for Fe, Zn, I and Se in Human Beings

Age
Male/Female

Fe (mg) Zn (mg) Iodine (mcg) Selenium (µg)
Birth to 6 months 0.27/0.27 - 110/110 -
7-12 months 11/11 3/3 130/130 -
1-3 years 7/7 3/3 90/90 20/20 
4-8 years 10/10 5/5 90/90 30/30
9-13 years 8/8 8/8 120/120 40/40
14-18 years 11/15 11/9 150/150 55/55
19-50 years 8/18 11/8 150/150 -
51 plus years 8/8 11/8 150/150 -
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approaches to strove towards food security and balanced nutrition.  
The research community needs to focus on biofortification with special con-
cern to demand-driven innovations. By using modern and advanced techno- 
logies, it is possible to serve communities sensibly, ensuring optimism owing 
to dynamically achieved results that can be successfully transformed into 
reality.
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