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AbstrAct

This paper discusses the potential of visible and near-infrared hyperspectral imaging to describe 
properties of conventionally and organically grown carrots. 140 samples of four Lithuanian  
carrot cultivars were scanned using a VNIR400H hyperspectral camera, capable of covering the 
spectral range of 400-1000 nm with a sampling interval of 0.6 nm. Half of the samples were 
grown under organic farming conditions and the remainder under conventional conditions. 
Chemical and electro-chemical properties, i.e. nitrate content, acidity, reduction potential and 
electrical conductivity, were determined for the carrot root samples using conventional methods 
of chemical investigations. The ability to separate organically and conventionally grown samples 
on the basis of spectral data was examined by applying estimations of Jeffries-Matusita distances 
and linear discriminant analysis. Opportunities to predict the chemical and electro-chemical 
properties of samples applying the partial least squares regression and the spectral data as 
predictors were also investigated. The overall classification accuracy of samples of organically 
and conventionally grown carrot cultivars when applying linear discriminant analysis was in the 
range of 94.4-100% and the Jeffries-Matusita distances were in the range of 1.98-2.00. There was 
good prediction potential using the partial least squares regression for electrical conductivity  
(R2 = 0.88) and reduction potential (R2 = 0.81), better than moderate for nitrate content  
(R2 = 0.77) and moderate for acidity (R2 = 0.68) using hyperspectral reflectance data of carrot 
captured under laboratory conditions. Both the separation ability and prediction potential were 
higher if taking into account the cultivar.
Keywords: carrots, chemical and electro-chemical properties, hyperspectral imaging, organic 
and conventional farming.
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INTRODUCTION

Numerous solutions used to monitor the food products aiming to ensure 
their quality are available: analytical methodologies such as potentiometric 
conductivity – electrophoresis and UV spectrometry (Wu et al. 2010), mass 
spectra screen-printed biosensors, ion-pair extraction and gas chromatogra-
phy, ion chromatography (Ito et al. 2010) and approaches based on holistic 
analysis (ulrIch et al. 2012). However, most of these methods require com-
plex processing of samples, expensive chemical reagents and highly qualified 
personnel to implement operationally at a mass production level and are 
time consuming. The importance of rapid, cheap, easy to apply, non-destruc-
tive and objective techniques to evaluate the quality of organic products is 
also increasing along with the growing investment and research in the area 
of organic production (laIron 2010). Hyperspectral imaging is an emerging 
and promising approach for food quality and safety control (Pu et al. 2015). 
Hyperspectral imaging systems are instruments that capture images  
of an object in many narrow (nanometer level) contiguous spectral bands. 
Depending on their construction, they can sense the reflected or emitted  
electro-magnetic radiation in a range from the ultraviolet (from 200 nm)  
to thermal (up to 15,000 nm) waves (Im, Jensen 2008). These instruments are 
constructed to collect hundreds of spectral bands for every pixel of an image, 
resulting in narrow waveband data which has a greater potential for precise 
identification, discrimination and classification of analyzed objects and their 
features (Im, Jensen 2008). 

There is interest in the use of hyperspectral imaging technology for 
non-destructive analysis in many application areas, including the food indus-
try and agricultural production. These techniques have been used either in 
studies or operational applications such as quality evaluation of fruits and 
vegetables (hu et al. 2016, Zhao et al. 2010), estimation of physical  
and chemical characteristics of fruits and vegetables (elmasry et al. 2007, 
Zhao et al. 2009, Fernandes et al. 2011, raJkumar al. 2012), or dealing with 
the properties related to processing and infestation of agricultural products 
(WIllIams et al. 2010, do trong et al. 2011, huang et al. 2014, nogales- 
-Bueno et al. 2014).

Electro-magnetic waves, interacting with an object, are absorbed by,  
reflected from or transmitted into the material. Electronic transition and 
charge transfer processes largely determine the position of diagnostic absorp-
tion features in the VIS and NIR wavelengths of the spectra. The absorption 
features are determined by the particular physical and chemical structure  
of the material. Thus, the variables characterizing light absorption features 
can be directly related to the chemistry and structure of the sample  
(Van der meer 2004). In spectroscopy, the partial least squares regression 
(PLSR) is a widely used method to develop predictive models for chemical 
constituents (which are optically active) of an investigated sample with spec-
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tral data, and is also very suitable for high-dimensional hyperspectral image 
data – when the number of samples is fewer than the number of investigated 
characteristics used as independent variables (asner, martIn 2008). 

Carrots (Daucus carota var. sativa) are chosen as an object of investiga-
tions in our study. There have been few studies on the implementation  
of spectral approaches for quality estimation of carrots. schulZ et al. (2000) 
tested the possibility of estimating the amount of carotenoids according  
to NIR reflectance in carrot roots. BelIe et al. (2003) used non-destructive 
NIR reflectance measurements to predict a change in the sensory quality  
of carrots during heat treatment. QuIlItZsch et al. (2005) studied various 
spectroscopic methods for non-destructive determination of various quality 
parameters (e.g. β-carotene and dry matter content) in carrots. Zude et al. 
(2007) tested the feasibility of hyperspectral imaging for monitoring the com-
pounds determining carrot production quality (e.g. sugar and carotene con-
tents) throughout the whole product storage time. FIrtha (2009) investigated 
spectral changes of different cultivars and tissues of carrots stored under 
different conditions in regard to their moisture loss.

This paper aims to present the potential of hyperspectral imaging to 
evaluate the quality of organic products in a non-destructive way. We hy-
pothesize that some properties of carrots, namely, nitrate (NO3) content, 
acidity (pH), reduction potential (ORP) and electrical conductivity (σ), may be 
assessed using a hyperspectral imaging approach and deliver results compa- 
tible with the ones achieved by conventional methods of chemical investiga-
tions. Specific objectives of the study are (i) to investigate the potential  
of visible (VIS) and near-infrared (NIR) hyperspectral imaging as a possible 
solution to ensure a rapid, objective and non-destructive separation of orga- 
nically and conventionally grown vegetable products, and (ii) to deal with 
some more specific methodological issues like a selection of the wavebands 
that best represent the spectral differences or the influence of different culti-
vars within the same species on the separation ability.

MATERIAL AND METHODS

Sample description and measurements
There were 140 carrot samples used for investigation (Table 1), aiming 

for at least 16 samples per cultivar and growing conditions. Four different 
carrot cultivars grown in Lithuania were represented in the study. Carrot 
samples of all cultivars were provided by the Institute of Horticulture,  
Lithuanian Research Centre for Agriculture and Forestry, and grown under 
conditions of organic (hereafter referred to as ‘EKO’) and conventional farms. 
All other growing conditions were considered to be uniform for all samples.

The hyperspectral scanning process was conducted using a Themis  
Vision Systems LLC hyperspectral camera VNIR400H. This device is 
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equipped with a very sensitive spectrometer, capable of covering the spectral 
range of 400-1000 nm with a sampling interval of 0.6 nm and producing  
955 spectral bands. The spatial data of scanned samples were recorded  
in a CCD array in 1392 × 1000 pixel resolution, with the pixel size of 
6.45 µm × 6.45 µm. The camera’s field of view was 30°. The camera was 
mounted on a copy stand and positioned so that the lens was fixed at 40 cm 
above a sample at the nadir position. Two 100-W halogen lamps were em-
ployed to provide stable electro-magnetic radiation in the 400-1000 nm 
range. The lamps were fixed symmetrically at both sides of the camera lens 
and illuminated the sample so that their light beams intersected each other 
above the sample.

The spectral curves derived from every pixel of each sample image were 
averaged to construct a unique spectral curve of the whole image. Finally, 
four reflectance curves were derived from the four sample images and then 
averaged to construct a single reflectance curve for each sample. In total, 140 
reflectance curves were constructed. In a spreadsheet, each reflectance curve 
was treated as a series of numbers (reflectance coefficients) in 955 wave-
bands in 400-1000 nm. These series of numbers were used for statistical 
analyses.

Scanned samples were immediately submitted to laboratory measure-
ments of NO3, pH, ORP and σ. The concentration of NO3-nitrogen in carrots 
was determined by extraction with an aluminum sulfate solution and subse-
quent determination by an ion-selective electrode, as described in the Hand-
book of Methods for Plant Analysis (mIller 1998). Procedures defined in the 
Lithuanian National standard LST EN 1132:1994 were used to determine 
pH. The σ was measured using a WTW Inolab apparatus with calomel elec-
trodes. The redox potential (OPR) in relation to the standard hydrogen  
electrode (Eh′, mV) was measured using a 781 pH/ Ion Meter apparatus with 
a special platinum electrode.

Statistical analyses
The distribution of the spectral responses at every spectral band and the 

distribution of data of chemical measurements were tested for normality us-

Table 1
Number of samples investigated according to carrot cultivars and growing conditions

Cultivar
Number of samples

organic conventional

Garduolės 16 20
Skalsa 16 20
Svalia 16 16

Šatrija 16 20
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ing the Shapiro-Wilk test (a = 0.05). The homogeneity of the variance was 
checked using the Levene’s test (a = 0.05).

Student’s t-test was applied to determine whether the differences  
in the measured NO3, pH, ORP and σ between conventionally and organi- 
cally grown carrots were statistically significant. The null hypothesis 
H0: µconventional = µorganic was compared to the alternative hypothesis 
H1: µconventional ≠ µorganic, where μ was the mean value of NO3, pH, ORP and  
σ of the farming methods compared. The hypothesis test was carried out us-
ing two sample t-tests for all varieties (a = 0.05).

Principal component analysis (PCA) was employed to reduce the dimen-
sionality and redundancy inherent in hyperspectral data. The non-linear iter-
ative partial least squares algorithm was employed in calculations (Wold et al. 
1987). In this study, PCA was used to compute the contribution of the reflec-
tance originating from each wavelength to the principal components (PCs). 
The number of PCs used in the classification was determined by choosing 
enough eigenvectors to account for 99% of the variance in the original data. 

The spectral separability between conventionally and organically grown 
cultivars, at the cultivar level and at the species level, was estimated using 
Jeffries-Matusita (JM) distances. Linear discriminant analysis (LDA) was 
applied for classification of conventionally and organically grown carrots. The 
PLSR was used for prediction of NO3, pH, ORP and σ independently using 
the wavelength reflectance values as the predictors. The leave-one-out cross 
validation was performed to check the fit and the predictive ability of the 
models. All four models were also validated using external data sets that 
were created by randomly selecting 30% of samples from initial data sets. 
For the best predicted attributes (coefficient of determination > 0.5) the 
wavebands which were most sensitive to detection of those attributes were 
identified by using regression coefficients resulting from the PLSR models.

RESULTS

The reflectance data for every spectral band as well as the values  
of chemical and electro-chemical parameters were homoscedastic and  
normally distributed (p > a). The statistical characteristics of laboratory 
measured NO3, pH, ORP and σ are presented in Table 2.

Within the same cultivar, tested chemical and electro-chemical proper-
ties of conventionally and organically grown carrots differed significantly  
in some cases only (Table 3). The σ was significantly different in all cases  
of tested cultivars, the NO3 concentration and ORP were significantly diffe- 
rent for only one cultivar, and pH was significantly different in two cultivars.

The PCA indicated that if the first six PCs were retained then > 99% of 
the variation in the initial spectral data was represented. Thus, the six 
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Table 2
Measured chemical and electro-chemical attributes of carrot samples

Attribute Statistic
Cultivar

Garduolės Šatrija Skalsa Svalia
Conventionally grown

NO3 (mg l-1)

mean 48.90 273.3 13.30 123.6
SD 43.95 423.6 1.750 102.6
min 26.50 38.00 10.00 44.00
max 170.0 1100 16.50 305.0

pH

mean 6.340 6.360 6.340 6.520
SD 0.090 0.100 0.120 0.120
min 6.160 6.190 6.130 6.310
max 6.470 6.540 6.470 6.660

ORP (mV)

mean 234.6 249.2 171.7 160.9
SD 52.87 20.67 26.77 69.19
min 172.0 232.0 146.0 109.0
max 291.0 302.0 219.0 273.0

σ (mS cm-1)

mean 5.270 8.300 6.510 8.870
SD 0.920 1.610 1.220 0.660
min 3.730 5.290 4.620 7.990
max 7.190 10.05 8.150 9.790

Number of samples 20 20 20 16
Organically grown

NO3 (mg l-1)

mean 62.25 94.81 71.56 45.56
SD 47.66 99.61 63.17 12.65
min 28.50 36.50 13.50 23.50
max 145.0 275.0 165.0 65.00

pH

mean 6.270 6.350 6.380 6.300
SD 0.040 0.090 0.060 0.100
min 6.210 6.220 6.290 6.160
max 6.310 6.470 6.470 6.430

ORP (mV)

mean 210.8 146.4 169.0 142.1
SD 51.60 12.16 17.37 32.04
min 156.0 128.0 152.0 120.0
max 307.0 163.0 200.0 209.0

σ (mS cm-1)

mean 3.820 4.240 5.320 3.930
SD 1.330 0.890 0.930 0.600
min 2.310 2.820 3.890 3.240
max 5.790 4.970 6.500 4.830

Number of samples 16 16 16 16
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wavebands with the highest absolute values of component loadings  
to PC1-PC6 were selected as optimal ones to discriminate the carrot culti-
vars and farming method. The green, yellow, red and NIR portions  
of the spectra were the most important in sample discrimination (Table 4).

Poor spectral separation ability could be expected based on measured JM 
distances between conventionally and organically grown carrot samples  
(JM distance was 0.9032, i.e. < 1) when the cultivar was not assumed  
(Table 5). However, if the spectral properties of the same cultivar were com-
pared, the JM distances suggested excellent separation ability (JM distance 
approached or equaled 2).

When the carrot cultivar was taken into account, perfect classification 
accuracy using the LDA was achieved for the cultivars Skalsa, Svalia and 
Šatrija (κ̂  = 1.0), and almost perfect for cv. Garduolės (κ̂  = 0.89) – Table 6. 
These results were fully compatible with the measurements of JM distances. 
There was only moderate classification accuracy when all investigated sam-

Table 3
Differences between measured mean values of NO3, pH, ORP and σ  

of organically and conventionally grown carrots 

Cultivar Attribute
NO3  

(mg l-1)
pH

ORP  
(mV)

σ  
(mS cm-1)

Garduolės /  
/ Garduolės EKO

differences (%) -27.30 1.150 10.17 27.47
significance (p-value) 0.550 0.050 0.350 0.010

Šatrija / Šatrija EKO
differences (%) 65.30 0.180 41.26 48.89
significance (p-value) 0.260 0.810 1.26E-09 9.04E-06

Skalsa / Skalsa EKO
differences (%) -438.06 -0.510 1.570 18.28
significance (p-value) 0.030 0.480 0.810 0.040

Svalia / Svalia EKO
differences (%) 63.14 3.370 11.660 -125.6
significance (p-value) 0.070 1.41E-03 0.500 2.90E-10

Significant differences (p < 0.05) are marked in bold.

Table 4
Variance explained by principal components (%) and wavelengths (nm) most sensitive to carrot 

cultivar and farming method separation

Principal component (PC) Variance explained Most informative wavelength

PC1 57.90 878.3

PC2 33.40 504.1

PC3 4.200 678.6

PC4 1.700 722.1

PC5 1.600 573.9

PC6 0.800 534.5
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Table 5
Spectral separability of conventionally and organically grown carrot samples according  

to Jeffries-Matusita (JM) distances

Cultivar JM distance
Garduolės 1.989

Šatrija 1.979
Skalsa 1.986
Svalia 2.000

All 0.903

Table 6
The accuracy of sample classification according to farming methods

Cultivar Farming method Classified  
as conventional

Classified  
as organic Producer’s accuracy

Garduolės
conventional 18 2 90%

EKO 0 16 100%
User’s accuracy 100% 88.9%

Overall classification accuracy 94.4%
κ̂  0.89

Skalsa
conventional 20 0 100%

organic 0 16 100%
User’s accuracy 100% 100%

Overall classification accuracy 100%
κ̂  1.00

Svalia
conventional 16 0 100%

organic 0 16 100%
User’s accuracy 100% 100%

Overall classification accuracy 100%
κ̂  1.00

Šatrija
conventional 20 0 100%

organic 0 16 100%
User’s accuracy 100% 100%

Overall classification accuracy 100%
κ̂  1.00

All
conventional 54 22 71.0%

organic 20 44 68.8%

User’s accuracy 73.0% 66.7%

Overall classification accuracy 70.0%

κ̂ 0.40
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ples, regardless of a cultivar, were classified into two classes, i.e. convention-
ally and organically grown ones (κ̂  = 0.40).

There was good potential prediction performance for σ (R2 = 0.88) and 
ORP (R2 = 0.81), better than moderate for NO3 (R2 = 0.77) and moderate for 
pH (R2 = 0.68) for all samples used, i.e. regardless of a cultivar or a farming 
method (Table 7, Figure 1). The performance of prediction varied depending 

Table 7 
Parameters of PLSR models to predict the NO3, pH, ORP and σ

Cultivar Attribute
Leave-one-out 
cross validated 

R2

Root mean square 
errors  

of prediction

Mean absolute 
percentage error 

(%)

Garduolės,  
36 samples 

NO3 (mg l-1) 0.85 3.34 8.12
pH 0.83 0.02 0.35

ORP (mV) 0.62 33.61 12.92
σ (mS cm-1) 0.79 0.63 9.92

Šatrija,  
36 samples 

NO3 (mg l-1) 0.65 12.34 17.63
pH 0.39 0.05 0.73

ORP (mV) 0.93 15.14 6.6
σ (mS cm-1) 0.89 0.64 11.2

Skalsa,  
36 samples 

NO3 (mg l-1) 0.97 0.28 1.88
pH 0.84 0.05 0.63

ORP (mV) 0.9 8.15 3.98
σ (mS cm-1) 0.94 0.28 3.91

Svalia,  
36 samples 

NO3 (mg l-1) 0.99 0.34 0.53
pH 0.94 0.03 0.38

ORP (mV) 0.87 20.22 13.36
σ (mS cm-1) 0.98 0.18 3.22

All conventionally 
grown,  

76 samples

NO3 (mg l-1) 0.65 13.91 45.7
pH 0.41 0.1 1.33

ORP (mV) 0.81 26.44 12.35
σ (mS cm-1) 0.85 0.75 10.16

All organically 
grown,  

64 samples 

NO3 (mg l-1) 0.93 4.46 14.34
pH 0.87 0.03 0.37

ORP (mV) 0.73 11.6 6.38
σ (mS cm-1) 0.9 64 10.93

All, 140 samples 

NO3 (mg l-1) 0.77 5.95 16.7
pH 0.68 0.06 0.9

ORP (mV) 0.81 23.34 10.2
σ (mS cm-1) 0.88 0.66 9.9



430

on a cultivar and a farming method. However, the small number of samples 
should be kept in mind.

The best prediction of NO3, pH and σ was achieved for cv. Svalia, and of 
ORP for cv. Šatrija. The aforementioned attributes were better predicted for 
organically grown compared to conventionally grown samples (Table 7) – the 
prediction R2 was improved for all chemical and electro-chemical properties 
if only organically grown samples were considered.

The wavebands most tightly related to pH, ORP, σ and NO3 concentra-
tion are summarized in Table 8. The majority of most informative wave-
lengths for NO3 concentration were located in NIR; for pH in violet, green 
and red; for ORP in violet, blue and green; and for σ in green-red portions of 
the spectra (Table 8).

Fig. 1. Measured and predicted values of pH, ORP, σ and NO3, including the full spectral range 
of all investigated samples (residuals referring to conventionally grown samples are marked ‘Δ’, 

organically ‘Χ’)
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DISCUSSION

The benefits of hyperspectral imaging are better exploited when the 
method is used for online inspection of quality and safety of agricultural 
products (Wu, Sun 2013). However, the hyperspectral camera, image acqui- 

Table 8 
The most sensitive wavelengths selected according to PLSR coefficients  

(ordered in ascending order)

Cultivar Attribute Most sensitive wavelengths (nm)

Garduolės, 36 samples 

NO3 (mg l-1) 471.8; 502.8; 698.5; 777.1; 901.4; 921.3
pH 413.1; 434.1; 554.1; 770.0; 905.9; 962.3

ORP (mV) 423.9; 437.1; 490.0; 540.6; 589.1; 783.0
σ (mS cm-1) 414.8; 454.7; 485.2; 652.4; 732.9; 946.3

Šatrija, 36 samples 

NO3 (mg l-1) 451.7; 478.5; 691.4; 819.3; 823.2; 978.9
pH 438.9; 440.1; 537.6; 686.3; 973.2; 978.9

ORP (mV) 400.6; 450.5; 533.3; 546.1; 590.4; 729.1
σ (mS cm-1) 451.7; 474.8; 544.3; 636.4; 675.4; 973.8

Skalsa, 36 samples 

NO3 (mg l-1) 438.9; 560.3; 688.2; 764.8; 862.3; 986.0
pH 427.3; 457.2; 512.0; 692.1; 918.7; 985.3

ORP (mV) 422.2; 434.7; 469.9; 564.6; 674.2; 720.1
σ (mS cm-1) 442.5; 484.0; 540.0; 653.7; 679.9; 961.6

Svalia, 36 samples 

NO3 (mg l-1) 402.3; 559.0; 681.8; 780.4; 885.4; 975.1
pH 415.4; 439.5; 519.3; 693.3; 930.2; 966.8

ORP (mV) 400.6; 425.6; 457.8; 544.9; 593.6; 726.5
σ (mS cm-1) 404.6; 483.3; 543.0; 653.7; 684.4; 967.4

All conventionally grown, 
76 samples 

NO3 (mg l-1) 454.1; 512.6; 694.6; 788.8; 881.5; 960.4
pH 414.8; 442.5; 538.2; 680.6; 958.4; 969.3

ORP (mV) 402.9; 414.3; 441.9; 529.6; 632.6; 724.6
σ (mS cm-1) 476.6; 530.9; 535.1; 656.3; 678.6; 946.9

All organically grown,  
64 samples 

NO3 (mg l-1) 437.1; 542.4; 679.9; 758.4; 868.1; 980.9
pH 433.6; 449.2; 547.9; 724.0; 970.0; 977.0

ORP (mV) 406.9; 413.1; 490.0; 572.6; 579.5; 770.6
σ (mS cm-1) 435.8; 482.7; 544.3; 676.7; 718.9; 962.9

All, 140 samples 

NO3 (mg l-1) 508.9; 539.4; 697.2; 761.0; 887.3; 953.3
pH 444.4; 475.4; 583.4; 739.9; 953.3; 971.9

ORP (mV) 401.2; 415.4; 509.5; 538.2; 612.8; 759.7
σ (mS cm-1) 448.6; 506.5; 565.2; 653.1; 713.8; 959.7
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sition and processing approaches used in the current study were aimed to be 
applied in laboratory investigations. Therefore, the subsequent discussion 
focuses on the methodological issues of using hyperspectral imaging to assess 
properties of agricultural products, in this case, conventionally and organi-
cally grown carrots. Carrots are one of the most common vegetables con-
sumed in Lithuania, with an increasing share of organically grown produc-
tion. Carrot roots have been subject to spectral investigations; however,  
the focus has usually been the prediction of carotene and sugar content 
(schulZ et al. 2000, QuIlItZsch et al. 2005, Zude et al. 2007). There has been 
little spectral research of carrots so far (BelIe et al. 2003, FIrtha 2009).

Significant differences in σ between organically and conventionally 
grown carrots (Table 2) suggest that different farming methods most strong-
ly affected the σ of roots, and factors influencing σ were the most important 
to spectral reflectance properties of carrot roots. Changes occurring in cell 
walls, membranes and compositions of cell contents, also the type of bioma-
terial and condition of the structure of cells, can affect σ (sasson, monselIse 
1977). The σ is proportional to the total concentration of solutes in the nutri-
ent solution (WInsor, adams 1987), thus changes in cell condition and struc-
ture can also affect the properties of spectral reflectance, especially in the 
NIR region of the spectrum (nIcolaï et al. 2007). This was evident in our 
study too, as the wavelength most sensitive to a carrot cultivar and farming 
method separation was exactly in NIR region (878.34 nm) – Table 4.

There was only moderate potential to separate the samples into groups 
of conventionally and organically grown carrots using spectral data and LDA 
if a cultivar was not considered. This result, also supported by the JM dis-
tance measurement, suggests that there were greater differences within the 
compared features among the cultivars grown under the organic or conven-
tional regime. All samples were provided from research fields of the Institute 
of Horticulture, and thus the growing conditions were comparable except for 
those predefined by the conventional and organic farming systems.

The investigated chemical and electro-chemical properties of the carrot 
cultivars did not generally differ significantly regarding a cultivation method 
(organic/conventional). Only σ differed significantly between conventionally 
and organically grown carrots for all cultivars. Amounts of NO3 and ORP 
differed significantly only for one cultivar each (Garduolės and Šatrija,  
respectively), and pH significantly differed in two cases (Garduolės and Svalia). 
This suggests that differences due to the growing regime were most pro-
nounced in the case of σ, as measured σ was consistently higher in roots  
of conventionally compared to organically grown carrots.

The selection of only several optimal wavebands for calculation of JM 
distances was predetermined by the restrictions of the method itself.  
The JM distance measurement applied in our study is a parametric method 
based on covariance matrixes calculation. Calculation of the JM distance 
using all 955 bands was not possible because of the singularity problem  
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of matrix inversion (the number of 16 spectral samples per carrot cultivar 
was insufficient for such a calculation). Many studies have shown that  
a smaller set of spectral bands can generate more accurate results than  
the whole set (deBacker et al. 2005, VaIPhasa et al 2005). Many authors have 
reported JM distance as an appropriate separability measure. In our study, 
the assumptions based on JM distances were fully confirmed by the LDA 
results.

The NO3, ORP and σ in carrot roots were found to be predictable based 
on the data from the VIS-NIR hyperspectral reflectance measurements. 
There have been some more successful studies dealing with the prediction  
of the NO3 concentration in vegetables according to their spectral data;  
however, to our best knowledge, none dealt with carrot roots. Nevertheless 
the most successful studies in NO3 estimation in vegetables have employed 
either a broader range NIR spectroscopy, or UV spectroscopy (nam et al. 2008).

In the present study, there were poor results of the prediction of pH and 
ORP in carrots roots according to their hyperspectral reflectance measure-
ments in the 400-1000 nm range. There have been some successful studies 
dealing with the prediction of pH in fruits or berries according to their  
spectral measurements (lIu, yIng 2005, gómeZ et al. 2006, elmasry et al. 
2007, shao et al. 2007, moghImI et al. 2010), however, none of them dealt 
with the prediction of pH of roots. The best prediction results in these previous 
studies were achieved employing substantially more samples and broader 
spectral ranges – up to 2500 nm in some studies.

CONCLUSION

Spectral data captured using VIS and NIR hyperspectral imaging had  
a high classification potential of conventionally and organically grown carrots 
when a cultivar was taken into account. Overall classification accuracy of the 
four Lithuanian carrot cultivars, conventionally and organically grown, using 
LDA was in the range of 94.4-100% and the JM distances were in the range 
of 1.98-2.00. However, hyperspectral reflectance data resulted in moderate 
separation ability of the samples of conventionally and organically grown 
carrots (with an overall classification accuracy of 70% and JM distance  
of 0.90) when a cultivar was not taken into account. The methodology deve- 
loped allowed good prediction potential using PLSR for σ (R2 = 0.88; 
MAPE = 9.9%) and ORP (R2 = 0.81; MAPE = 10.2%), better than moderate 
for NO3 content (R2 = 0.77; MAPE = 16.7%) and moderate for pH (R2 = 0.68; 
MAPE = 0.9%) – hence they can be employed as predictors with hyperspec-
tral reflectance data of carrots captured under laboratory conditions.  
The prediction potential improved when considering a cultivar or only organi- 
cally grown samples.
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