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AbstrAct

Although field monitoring can provide an accurate measurement of pollution, these measure-
ments are of a limited spatial coverage. On the contrary, satellite-based observations can pro-
vide Aerosol Optical Depth (AOD) products with higher spatial resolution and continuous spatial 
coverage; however these products cannot directly measure the pollution concentration. In this 
study, the potential of a Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors was 
investigated to evaluate the air quality parameters, after which water consumption in the stu- 
died area was considered. For this purpose, linear regression analysis was used in order to  
develop a relationship among MODIS-AOD, metrological data (relative humidity, temperature, 
precipitation, and wind speed) and air pollution data (CO, O3, NO2, SO2, PM2.5) gathered 22 
monitoring stations from 2012 to 2016. Among the 5 years of pollution data collection, the period 
of 2012 to 2014 was used for the model calibration and the period of 2015 to 2016 was used for 
the validation of the model. The results indicated that the regression models were of the best 
performance during spring (R2 = 0.901 for CO), moderate performance during winter (R2 = 0.674 
for CO) and autumn (R2 = 0.694 for CO), and weak performance during summer (R2 = 0.181 for 
SO2). The results of the validation process also showed that the maximum determination factor 
(R2 = 0.83) was obtained during spring season and for PM2.5 and the least (R2 = 0.18) was ob-
tained during summer and for SO2. Meanwhile, the assessment of water consumption demon-
strated that there is significant relationship between water consumption and the concentration 
of pollution parameters.
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INTRODUCTION

Investigation of the pattern of air pollution emissions due to spatial and 
temporal variability is one of the most challenging issues. In addition, the 
spatial and temporal variations of pollution parameters are much higher 
than the other components of the atmosphere. Therefore, the spatial distri-
bution of air pollution emission is required to be estimated with a high pre-
cision in order to become aware of their influence on the weather and cli-
mate, biosphere and human health. For this purpose, satellite images could 
be used for preparing the quantitative data of pollution and their changes in 
the time and space (Wang, Christopher 2003, Lee et al. 2017, tang et al. 
2017).

Many studies show that an increase in amounts of polluting particles in 
the atmosphere can lead to cardiovascular and respiratory diseases (BeeLen 
et al. 2014, Chu et al. 2003, Wong et al. 2015, Jin et al. 2017). The air pollu-
tion parameters are today monitored by using ground stations, which provide 
accurate point measurements for their adjacent area. These values are then 
attributed to the entire region by extrapolation. Nevertheless, the measuring 
stations are usually dispersed and mostly located in urban areas. Therefore, 
a regional study of air pollution parameters in the areas without measuring 
station is difficult and even impossible.

Over the recent years, it has been attempted to predict pollution parame- 
ters using Remote Sensing (RS) data. It has been found through many studies 
that the data obtained from aerosols using the RS, especially the AOD, have 
a close relationship with the pollution concentration. Therefore, this parame- 
ter can be used for estimating the pollution concentration (engeL-Cox et al. 
2004, gupta et al. 2006, Brauer et al. 2012, Cohan, Chen 2014, raoufi et al. 
2018). Such factors as the vertical distribution of particles, the combination 
of particles, and their size have affected the relation between AOD and pol-
lution concentration (gupta et al. 2009, Jathar et al. 2014, KuWayama et al. 
2015, franKLin et al. 2017, Liu et al. 2017). The effects have been investigated 
empirically in order to find a valid relationship between AOD and the con-
centration of different pollutants (Wang et al. 2014, Dhyani et al. 2017).  
To overcome the lack of necessary data, statistical models have been also 
used to eliminate these effects in order to find a more precise relationship 
between the two parameters of AOD and the concentration of pollution  
(Liu et al. 2004). Most of the studies have focused on the development  
of a simple relationship in the form of a linear regression equation between 
AOD and various pollutants (Liu et al. 2005, Kumar et al. 2007, Liu et al. 
2015, franKLin et al. 2017). To improve the relationship between AOD and 
pollution parameters, meteorological parameters have also been used in 
some studies (gupta et al. 2009). Other scientists exploring atmospheric 
physics have concluded that weather conditions such as wind velocity, rela-
tive humidity, and atmospheric temperature and pressure can disrupt the 
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composition of AOD and PM2.5, and the surface wind velocity, air tempera-
ture, and the boundary layer elevation are important predictors for AOD – 
PM2.5 models (Kumar et al. 2007, KeLLy et al. 2017).

Kumar et al. (2007) used AOD data from a MISR sensor of Terra satellite 
to develop a spatial-temporal model for estimating PM2.5 and PM10 concentra-
tions in southern California. For this purpose, they used the data from a 
measuring station to validate the model parameters. They concluded that the 
model combined of AOD, relative humidity, and wind speed as independent 
variables, is a good predictor for PM2.5 (R2 = 0.67), whereas, PM10 can be bet-
ter predicted with the help of AOD and dew point (R2 = 0.76).

There are many effective factors in the creation and emission of air pol-
lutants over the industrial areas and metropolies such as Tehran. Industrial 
development, population growth, urbanization, and the subsequent develop-
ment of heavy traffic have made air pollution in Tehran city as one of the 
most important challenges. Reports provided by Tehran Air Control Compa-
ny in 2015 about the main air pollutants (CO, O3, NO2, SO2, PM2.5), as the 
fifth published document, have determined the air quality of Tehran city in 
terms of the time and space aspects of the concentration of pollutants 
(TAQCC. 2016). The study was based on data from 22 active stations exist-
ing in Tehran city. Accordingly, in 2015, there were 21 clean air days (6%), 
233 healthy-air days (64%), 105 unhealthy days for sensitive social groups 
(29%), 5 unhealthy days for the general population (more than 1%) and  
1 very unhealthy day (less than 1%) in Tehran city. According to the report, 
despite the increase in the number of clean days in comparison with previous 
years, 30% of the days in 2015 were still beyond the healthy standard limit. 
In 2015, the lowest and the highest number of polluted days occurred in the 
summer (especially August) and winter (November and December) seasons, 
respectively. In the recent years, the particles with a diameter of less than 
2.5 micron (PM2.5), have been the main pollutant in Tehran city, and during 
2015, there were 111 days with inappropriate conditions regarding PM2.5 
pollutants. Based on this report, the concentration of pollutants in Tehran 
city over 2007-2015 showed an almost downward trend. However, the pollut-
ants O3 and NO2, have been relatively increasing since 2014. According to 
the measurements carried out at the Tehran air quality monitoring stations, 
aerosols with a diameter of less than 2.5 micron (PM2.5) are responsible for 
unfavorable conditions, and all polluted days in year 2015 occurred due to 
the increased concentration of this pollutant. The purpose of this study is to 
estimate the parameters of air quality in Tehran (CO, O3, NO2, SO2, PM2.5) 
by applying established regression relations among these data, MODIS-AOD 
data, and meteorological parameters (precipitation, relative humidity, tem-
perature, and wind speed) measured at the proximate meteorological sta-
tions. 
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MATERIAL AND METHODS

With the aim of finding regression relations among the AOD, meteoro-
logical parameters and pollution parameters, linear regression relations were 
seasonally developed from January 2012 to September 2016. To achieve this 
purpose, daily air quality data (measured at 22 active stations) and MO-
DIS-AOD daily data and meteorological parameters between the mentioned 
time period were used. The data in this time period were separated between 
seasonal intervals, and regression relations were developed for each season. 
After selecting the best regression relation for each pollution parameter, the 
spatial and temporal distribution map of these parameters was extracted for 
the most polluted days of each season. Finally, in order to investigate the 
effects of the amount of pollution on urban water consumption, the relation-
ship between weekly water consumption in Tehran and air pollution in this 
city were studied through the development of regression relations.

The used algorithm and method are presented in Figure 1. It shows a 
flowchart of the steps involved in performing this research.

Description of the studied area
In this study, Tehran, the capital of Iran with more than 15 million peo-

ple and covering about 730 km2, was studied. The geographical location of 
Teheran is identified by longitude 51°02′ E to 51°36′ E and latitude 35°24′ N 
to 35°50′ N, which equals to an approximate length of 50 km and an appro- 
ximate width of 30 km. The height of the city varies from 1050 m.a.s.l in the 
south to 2000 m.a.s.l in the north. Tehran is bordered with mountainous 
areas from the north and desert areas from the south, hence, there are dif-
ferent weather conditions in the south and north. The northern regions have 
cold and dry weather, and the southern areas are hot and dry. Figure 2 de-
picts the location of Tehran and the city’s air monitoring and measurement 
stations that are used in this study.

Data used
Measured data of air pollutants

This study was based on Tehran’s air pollution data collected at 22 active 
measuring and monitoring stations between 2012 to 2016. Such parameters 
as the concentration of major air pollutants including carbon monoxide (CO), 
ozone (O2), nitrogen oxides (NO2, NOx, NO), sulfur dioxide (SO2), aerosols 
with a diameter of less than 10 microns (PM10), and particles with a diame-
ter of less than 2.5 microns (PM2.5) are continuously measured in these sta-
tions. The locations of the active stations are shown in Figure 2.



85

MODIS sensor data
‘MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key 

instrument aboard the Terra (originally known as EOS AM-1) 
and Aqua (originally known as EOS PM-1) satellites (he et al. 2017). Terra’s 
orbit around the Earth is timed so that it passes from north to south across 
the equator in the morning, while Aqua passes south to north over the equa-
tor in the afternoon. Terra MODIS and Aqua MODIS are viewing the entire 
Earth’s surface every 1 to 2 days, acquiring data in 36 spectral bands, or 
groups of wavelengths (see MODIS Technical Specifications). These data will 

Fig. 1. Steps involved in performing this research
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improve our understanding of global dynamics and processes occurring on 
the land, in the oceans, and in the lower atmosphere. MODIS is playing a 
vital role in the development of validated, global, interactive Earth system 
models able to predict global change accurately enough to assist policy mak-
ers in making sound decisions concerning the protection of our environment’ 
(https://modis.gsfc.nasa.gov/about/).

Meteorological data and water consumption
Meteorological data including precipitation, relative humidity, air tem-

perature, and wind speed were used to develop regression models. For this 
purpose, among the available 5 meteorological stations in Tehran, the data 
of 2 stations (Mehrabad and Geophysics stations) were selected as these 
were closer to the air monitoring stations (Shad Abad and Tarbiat Modarres 
stations), and the daily data from these 2 stations between 2012 and 2016 
were used to develop the regression models. The locations of both stations is 
shown in Figure 2. The weekly water consumption data were also obtained 
from the Tehran Water Organization during the time period from 2012 to 
2016.

Satellite images pre-processing
The data of a MODIS sensor can be downloaded from the NASA’s web-

site as Hierarchical Data Format (HDF). Each file contains atmospheric  

Fig. 2. Location of Tehran city, air quality measurement stations and synoptic stations
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parameters that are measured by the MODIS sensor. It is necessary to first 
convert the HDF format to the GeoTIFF format and then use these data in 
ArcGIS. In this study, due to the number of 1706 AOD images and the 
time-consuming processes, a model builder tool in ArcGIS software was used 
to facilitate the processing and generate the necessary inputs. In this way, 
using the Iterate Raster tool and batch processing, all AOD images were 
converted to the GeoTIFF format, and the values of each image correspon- 
ding to the air pollution monitoring station were extracted from them using 
the ‘extract multi-values to points’ tool.

Developing regression models
To develop regression models among pollution parameters, meteorologi-

cal parameters and AOD, it is rnecessary to develop regression equations for 
each pollution parameter separately with AOD and air pollution parameters. 
In this study, the correlation between MODIS-AOD and meteorological pa-
rameters (precipitation, relative humidity, temperature, and wind speed) 
were investigated as independent variables along with air quality parame-
ters (CO, O3, NO2, SO2, PM2.5) as dependent variables. In the case of a high 
correlation, RS data along with meteorological data will be used to prepare 
the map of air pollution parameters in Tehran city. To achieve this, the time 
period from 2012 to 2016 was divided into two parts. The period of 2012 to 
2014 served for the development of regression models and the period of 2015 
to 2016 was used to validate the results. Since seasonal variation is consid-
ered, the analyses were conducted for each season. After the seasonal divi-
sion of data, all data were entered into SPSS and statistical analyses were 
conducted on the data. In order to include the impact of the meteorological 
parameters on the regression equations for each pollution parameter and for 
each season of the year, the relationship between each pollution parameter 
with AOD was calculated and then, using the stepwise regression approach, 
the meteorological parameters were entered into the regression model to 
evaluate the ability of these parameters to explain the dependent variable. 
Each parameter that is entered into the model and increases R2 of the devel-
oped model can explain the dependent variable, otherwise it will not affect 
the dependent variable and will be removed from the calculation. With this 
assumption, the regression equations for each season were developed be-
tween the pollution parameters, the AOD, and the meteorological parame-
ters. Finally, a seasonal variation map of the parameters in the period of 
2012 to 2016 was drawn for spatial and temporal analyses of the pollution.

Model performance evaluation indices
Four different criteria including the Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), Mean bias Error (MBE) and determination  
coefficient (R2) were used to examine the accuracy of the regression model 
prediction. Equations (1) to (4) show how to calculate these four statistical 
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parameters. The less the RMSE value, the higher the precision of the model 
will be obtained. In addition, when the MAE is closer to zero, the model used 
is more accurate in the prediction. The amount of MBE, which represents 
the bias amount of the prediction, should be close to zero in a fairly accurate 
model. Also R2 closer to 1 shows good performance of the model.

(1)
 

(2)

(3)

(4)

Where, Pi denotes the values predicted by the model, Oi is the measured 
values, Pave and Oave are respectively the average of the predicted and mea-
sured values, and n is the number of observations.

Some other statistical parameters were used in this study. R-square 
change is the improvement in R-square when the second predictor is added. 
The R-square change is tested with an F-test, which is referred to as the 
F-change. A significant F-change means that the variables added in that step 
significantly improved the prediction. Degrees of freedom (df1 and df2) of an 
estimate are the number of independent pieces of information that went into 
calculating the estimate and finally, a significant F-change means that the 
variables added in that step significantly improved the prediction. 

RESULTS AND DISCUSSION

Developing regression models 
The development of regression models in winter, spring, summer, and 

autumn was done by step-by-step entering of meteorological parameters into 
the model developed between the AOD and each of the air pollution parame-
ters. The summary of each regression model in winter, spring, summer, and 
autumn is depicted in Table 1 to 4 respectively. 

Tables 1 to 4 present the statistical summary of each regression model 
in winter, spring, summer, and autumn respectively. 

As can be seen in Table 1, the regression models are of a R2 varied from 
0.413 for SO2 gas to 0.674 for CO gas for CO gas. The values of variations in 
F statistics, which are less than 0.05 in different stages of the step-by-step 
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Table 1
Statistical summary of regression models developed between AOD and meteorological 

parameters as independent variables and pollution parameters as a dependent variable in winter

Dependent 
variable R R 

square
Adjusted 

R  
square

Std. error 
of the 

estimate

Change statistics
R 

square 
change

F 
change df1 df2 sig. F 

change

PM2.5 0.733 0.538 0.522 10.676 0.000 0.087 1 144 0.000
CO 0.821 0.674 0.663 4.919 0.001 0.349 1 144 0.000
O3 0.676 0.457 0.438 7.145 0.006 1.622 1 144 0.005

NO2 0.711 0.506 0.488 5.627 0.001 0.219 1 144 0.040
SO2 0.643 0.413 0.393 4.068 0.004 0.965 1 144 0.028

(5)PM2.5 = 166.694 × AOD + 0.230 × RH – 0.306 × P + 13.898
(6)CO = 119.389 × AOD – 0.203 × T – 0.302 × WS + 8.400

(7)O3 = 121.183 × AOD – 0.305 × RH + 0.314 × T – 0.1998 × P – 1.001 ×  
× WS + 18.782

(8)NO2 = 94.337 × AOD – 0.106 × T – 0.279 × WS + 9.126

(9)SO2 = 44.157 × AOD – 0.039 × RH + 0.157 × T + 0.154 × P – 0.440 ×  
× WS + 6.227

Table 2
Statistical summary of regression models developed between AOD and meteorological  

parameters as independent variables and pollution parameters as a dependent variable in spring

Dependent 
variable R R 

square
Adjusted 

R  
square

Std. error 
of the 

estimate

Change Statistics
R 

square 
change

F 
change df1 df2 Sig. F 

change

PM2.5 0.913 0.833 0.829 10.162 0.833 222.833 4 179 0.000
CO 0.949 0.901 0.899 4.957 0.901 819.360 2 181 0.000
O3 0.867 0.752 0.745 7.578 0.002 1.455 1 178 0.229

NO2 0.906 0.822 0.819 5.490 0.822 276.266 3 180 0.000
SO2 0.832 0.692 0.687 3.888 0.692 134.839 3 180 0.000

(10)PM2.5 = 185.892 × AOD – 0.273 × T + 0.385 × P +14.804
(11)CO = 124.038 × AOD – 0.331 × T – 0.156 × P + 7.636

(12)O3 = 123.305 × AOD – 0.089 × RH – 0.167 × T – 0.257 × P – 1.334 ×  
× WS + 15.488

(13)NO2 = 88.822 × AOD + 0.178 × RH – 0.088 × T – 0.314 × P – 0.312 ×  
× WS + 7.637

(14)SO2 = 39.500 × AOD + 0.136 × P – 0.426 × WS+ 7.792



90

Table 3
Statistical summary of regression models developed between AOD and meteorological 

parameters as independent variables and pollution parameters as a dependent variable in summer

Dependent 
variable R R 

square
Adjusted 

R  
square

Std. 
error of 

the 
estimate

Change Statistics
R 

square 
change

F 
change df1 df2 Sig. F 

change

PM2.5 0.648 0.420 0.411 10.306 0.420 43.485 3 180 0.000
CO 0.734 0.539 0.531 4.893 0.539 70.164 3 180 0.000
O3 0.560 0.314 0.295 7.180 0.013 3.245 1 178 0.073

NO2 0.648 0.420 0.403 5.412 0.001 0.313 1 178 0.077
SO2 0.425 0.181 0.167 4.083 0.181 13.236 3 180 0.000

(15)PM2.5 = 185.892 × AOD – 0.273 × T + 0.385 × P  + 14.804
(16)CO = 124.038 × AOD – 0.331 × T – 0.156 × P + 7.636

(17)O3 = 123.305 × AOD – 0.089 × RH – 0.167 × T – 0.257 × P – 1.334 ×  
× WS + 15.488

(18)NO2 = 88.822 × AOD + 0.178 × RH – 0.088 × T – 0.314 × P – 0.312 ×  
× WS + 7.637

(19)SO2 = 39.500 × AOD + 0.136 × P – 0.426 × WS + 7.792

Table 4
Statistical summary of regression models developed between AOD and meteorological 

parameters as independent variables and pollution parameters as a dependent variable in autumn

Dependent 
variable R R 

square
Adjusted 

R  
square

Std. error 
of the 

estimate

Change Statistics
R 

square 
change

F 
change df1 df2 Sig. F 

change

PM2.5 0.692 0.479 0.462 11.136 0.479 29.678 3 97 0.000
CO 0.833 0.694 0.681 5.106 0.002 0.539 1 96 0.465
O3 0.637 0.406 0.387 7.730 0.406 22.054 3 97 0.000

NO2 0.737 0.543 0.519 5.185 0.006 1.321 1 95 0.253
SO2 0.623 0.389 0.356 4.140 0.017 2.597 1 95 0.110

(20)PM2.5 = 147.045 × AOD + 0.145 × RH + 2.064 × WS + 9.777

(21)CO = 119.653 × AOD + 0.094 × RH + 0.109 × T – 0.251 × P + 6.175
(22)O3 = 94.085 × AOD + 0.091 × RH + 0.424 × WS + 9.995

(23)NO2 = 90.696 × AOD – 0.206 × RH + 0.189 × T + 0.133 × P + 0.73 ×  
× WS + 9.307

(24)SO2 = 63.110 × AOD – 0.048 × RH – 0.248 × T – 0.237 × P + 0.817 ×  
× WS + 5.453
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approach, show that the parameters entered into the regression model can 
well explain the changes of the dependent variable. Equations (5) to (9) show 
the relationships developed for each parameter of air pollution.

Where, RH is relative humidity (%), P is the amount of precipitation 
(mm), T is surface temperature (degree Celsius), and WS denotes the wind 
speed (m s-1).

As can be seen in Table 2, the regression models are of a R2 varied from 
0.692 for SO2 gas to 0.901 for CO gas. The values of variations in F statis-
tics, which are also less than 0.05, show that the independent parameters 
entered into the regression model can well explain the changes of the depen-
dent variable. Equations (10) to (14) show the relationships developed for 
each parameter of air pollution in the spring.

In summer, regression models have shown relatively weak results with 
R2 = 0.181 and 0.539 for parameters SO2 and CO respectively. Accordingly, 
the spatial distribution of pollution using these models will be relative in 
summer. The variations of F statistics, having values less than 0.05, show 
that the parameters entered into the regression model can well explain the 
changes of the dependent variable. Equations (15) to (19) show the relation-
ships developed for each parameter of air pollution in the summer.

Table 4 shows the statistical summary of the models developed for au-
tumn, which indicates that the models have correlations of R2 = 0.389 to R2 
= 0.694 for SO2 and CO, respectively. The developed models do not provide 
good precision for the prediction of SO2, while they are of an acceptable accu-
racy for NO2 and CO. The variations of F statistics, which are also less than 
0.05 in different stages of the step-by-step approach, show that the parame-
ters entered into the regression model can explain the changes of the depen-
dent variable. Equations (20) to (24) present the relationships developed for 
each parameter of air pollution in the autumn.

Verification of the regression models

At this stage of the study, the regression models obtained for each pa-
rameter in each season were verified with the parameters of the pollution 
parameters measured in the time period of years 2015 to 2016 in order to 
allow the regression models to be evaluated for the time interval other than 
the calibration interval. Table 5 shows the summary of the statistics calcu-
lated in the verification stage. According to this table, it can be seen that the 
best R2 is calculated in spring (0.83) for PM2.5 and its lowest value (0.18) is 
calculated in the summer and for SO2. The values of the RMSE statistic are 
also of the lowest value in spring for SO2 (3.84), and of the highest value in 
autumn and for PM2.5 (10.9). The negative values of the MBE statistic for 
most of the parameters in each season show that the developed regression 
models tend to overestimate each parameter. Only in the case of SO2 gas and 
in winter, the value of MBE=1.42 represents the tendency of the developed 
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regression model for underestimation for this gas. In summer, this statistic 
with the value equal to zero for O3 gas indicates that the regression equation 
developed for this gas has higher accuracy among other equations, in terms 
of MBE values. The MAE statistics for the SO2 parameter in spring and for 
PM2.5 in the winter have values of 3.27 and 9.06, respectively, which are the 
lowest and highest values of this statistic among other parameters and sea-
sons of the year. In general, and according to Table 5, due to having two 
statistical parameters superior than the four mentioned statistical parame-
ters, the regression model of estimating the SO2 parameter in spring can be 
the best developed regression model among the other models.

Spatial Distribution of Pollution Parameters
The spatial and temporal distributions of pollution parameters in Tehran 

from 2012 to 2016 were plotted for each parameter, separately. Figures 3 to 
7 show the spatial distribution of each of the five pollution parameters, ob-

Table 5 
Statistical summary of the verification of regression models for each season between time period 

of 2015 to 2016

Sig. F 
changedf2df1MAEMBERMSER2Department 

variableSeason

0.00014419.060.0210.390.53PM2.5

Winter
0.00014414.18-0.014.830.67CO
0.00514416.100.047.000.45O3

0.04014414.820.035.500.50NO2

0.02814413.551.424.220.40SO2

0.00017948.58-0.019.970.83PM2.5

Spring
0.00018124.33-0.574.990.80CO
0.22917816.500.037.440.75O3

0.00018034.67-0.015.420.82NO2

0.00018033.270.023.840.69SO2

0.00018038.74-0.0910.170.42PM2.5

Summer
0.00018034.08-0.024.820.53CO
0.07317816.060.007.070.31O3

0.07717814.690.425.530.41NO2

0.00018033.490.054.020.18SO2

0.0009739.57-0.0310.900.47PM2.5

Autumn
0.4659614.27-0.204.490.69CO
0.0009736.78-0.997.640.40O3

0.2539514.340.015.020.54NO2

0.1109513.41-0.034.000.38SO2
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Fig. 3. Spatial distribution of parameter PM2.5 in seasons: 1 – winter, 2 – spring, 3 – summer, 
4 – autumn

Fig. 4. Spatial distribution of parameter CO in seasons: 1 – winter, 2 – spring, 3 – summer,  
4 – autumn
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Fig. 5. Spatial distribution of parameter O3 in seasons: 1 – winter, 2 – spring, 3 – summer,  
4 – autumn

Fig. 6. Spatial distribution of parameter NO2 in seasons: 1 – winter, 2 – spring, 3 – summer, 
4 – autumn
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tained by using the regression equations. The spatial distribution of the 
concentration of PM2.5 in summer are illustrated in Figure 3 and show that 
western regions of Tehran exceed the standard limits (150.4 µg m-3). In the 
other seasons, the concentration of aerosols does not exceed the standard 
limit, and winter is of the lowest concentration of these particles. The results 
indicate that during this time period, the minimum and maximum immission 
values of carbon monoxide are equal to 33.71 and 112.78 ppm in autumn and 
summer respectively, hence, Tehran generally presents unhealthy conditions 
(standard limit = 15.4 ppm). Generally, the highest and lowest concentra-
tions of CO gas occurred in summer and autumn respectively (Figure 4). 
Based on the available standards that recommended the normal limit of O3 
gas equal to 75 ppb, this pollutant gas occurred excessively in summer and 
in the western regions of Tehran (Figure 5). In other seasons, the concentra-
tion of this gas is in the normal conditions. In the case of NO2 pollutant, ac-
cording to the available standards (annual standard value of 21 ppb), the 
concentration of this pollutant with a minimum and maximum values of 
25.80 ppb and 86.01 ppb is also on an unhealthy level in all parts of Tehran 
city (Figure 6). The SO2 pollutant is also on an unhealthy level in all seasons 
of the year, considering the standards available for this gas (7 ppb). The low-
est and highest concentrations of this gas are respectively observed in winter 
(14.52 ppb) and summer (41.12 ppb). In terms of spatial distribution, the 
concentration of all gases in the western regions are higher than that in the 

Fig. 7. Spatial distribution of parameter SO2 in seasons: 1 – winter, 2 – spring, 3 – summer, 
4 – autumn
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eastern regions. The spatial distribution is continued from the west to the 
central part of Tehran in summer, and the concentration of pollution is grad-
ually reduced eastwards. In spring, a small part of the western part of the 
city is highly polluted, and the central and eastern parts are less polluted. 
Owing to the inclusion of the effects of meteorological factors, the results of 
this study are more reliable than models that have been developed solely 
from the linear relationship obtained by the AOD.

The effects of the pollutants on water consumption
For investigating the effects of the mentioned pollutants on water con-

sumption, weekly water consumption data in Tehran city in years 2015 and 
2016 were used. To establish a relationship between the volume of water 
consumed and the amounts of each pollutant, the average weekly pollution 
parameters were calculated at the measurement stations of Tehran. Table 6 

illustrates the Pearson correlation coefficient between weekly water con-
sumption and pollutant parameters (CO, O3, NO2, SO2, PM2.5). As shown in 
this table, the lowest correlation, at 0.47, was found for the relationship with 
CO gas and the highest correlation was observed for PM2.5 at 0.57. However, 
all the values are similar and approximate 0.5. This low correlation can be 
due to the fact that water consumption is a function of some other factors. 
For example, on holidays, when traffic in the city is lower and air pollution 
is relatively decreased, the urban water consumption increases as a result of 
increased health activities such as washing and bathing. This lack of correla-
tion is more noticeable in long-term holidays such as the holidays of Nowruz 
celebration. Meanwhile, in this research, due to the lack of daily water con-
sumption data, weekly data were applied, whereas a daily data set may im-
prove the correlation coefficient.

Table 6
Pearson correlation coefficient between weekly water consumption and pollutant parameters

Pollutant parameter Water use

CO- 0.47

O3 0.50

NO2 0.54

SO2 0.56

PM2.5 0.57
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CONCLUSIONS

In this study, several regression relations were developed to estimate the 
air pollution parameters (CO, O3, NO2, SO2, PM2.5) using MODIS-AOD data 
and meteorological parameters (precipitation, relative humidity, temperature 
and wind speed). Correlation analysis between different parameters revealed 
that the highest and lowest correlations between AOD and relative humidity, 
and wind speed and SO2 are observed in winter with correlation values of 
R2 = 0.783 and R2 = 0.269, respectively. In spring, the highest and lowest 
correlation between AOD and relative humidity, and precipitation and O3 are 
seen with correlation values of R2 = 0.903 and R2 = 0.632, respectively.  
In summer, the highest and lowest correlations between AOD and CO, and 
wind speed and O3 are obtained with correlation values equal to R2 = 0.723 
and R2 = 0.087, respectively. Also in autumn, the highest and lowest correla-
tions between AOD and CO, and wind and precipitation can be seen with 
correlation values respectively equal to R2 = 0.831 and R2 = 0.263. The develop- 
ment of regression models in different seasons indicated that these models 
can well estimate the pollution parameters. In winter, the best result was 
obtained for the CO parameter with R2 = 0.674 and the lowest correlation 
was obtained for SO2 with R2 = 0.413. In spring, the regression models are of 
high values of R2 varied from 0.692 for SO2 gas to 0.901 for CO gas. In sum-
mer, regression models showed relatively poor results with R2 = 0.181 for the 
parameter SO2 to R2 = 0.539 for the parameter CO. In autumn, the models 
had correlations of R2 = 0.389 to R2 = 0.694 for SO2 and CO, respectively. 
The developed models did not provide good precision for the prediction of 
SO2, while having an acceptable accuracy for NO2 and CO. The verification of 
the results also showed that the best R2 is calculated in spring (0.83) for 
PM2.5 and its lowest (0.18) is obtained in summer and for SO2. The RMSE 
statistics also yielded the lowest values in spring and for SO2 (3.84) and the 
highest value was obtained in autumn and for PM2.5 (10.9). The negative 
values of the MBE statistic for most of the parameters in each season 
showed that the developed regression models tend to overestimate each  
parameter. Also, the MAE statistic for the SO2 parameter in spring and for 
PM2.5 in winter have values of 3.27 and 9.06, respectively, which were the 
smallest and highest values of this statistic among other parameters and 
seasons. Altogether, the regression model for the estimation of SO2 parame-
ter in spring, due to having two statistical parameters superior than the four 
mentioned statistical parameters, was the best developed regression model. 
The results of this research indicate that the meteorological variables such 
as relative humidity and wind speed can increase regression relations  
between AOD and the parameters of air pollution in Tehran. By having an 
appropriate global coverage, especially in places without air quality measure-
ment networks, RS data are very useful. A regional approach could be the 
most appropriate method because of complex chemical and physical parame-
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ters that affect the pollution concentration. The results are in agreement 
with the results of the previous research work (emiLi et al. 2010, emiLi et al. 
2011, Li et al. 2017). In the future, the improvement of RS data adopted to 
testing the atmosphere, as well as the increased spatial and temporal resolu-
tion of data, could lead to more accurate prediction of air pollution parame-
ters based on RS data.
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