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AbstrAct

The share of adulterated wines on the global market is rising and this trend is also visible in 
the Czech Republic. The control authorities are confronted with an increasing number of cases 
of adulterated wine. A characteristic feature of grapevine cultivation in the Czech Republic is a 
diverse spectrum of the cultivars. The verification of wine’s varietal authenticity, next to the 
confirmation of geographic origin, is the toughest challenge for analytical chemists and control 
laboratories. The aim of this study was to assess possibilities of the discrimination and classifi-
cation of Moravian varietal wines based on the elemental composition data. An important objec-
tive was to find the variables in elemental composition which are strongly associated with a 
particular variety. Tests were performed on three popular varieties (Rhine Riesling, Müller- 
-Thurgau and Green Veltliner). Analysis of wine samples was carried out by the combination of 
ICP-MS and ICP-OES methods. Experimental data were evaluated by univariate and multiva-
riate statistical methods, such as analysis of variance, principal component analysis and  
discriminant analysis. Statistically significant discriminant fuctions and predictive functions 
were constructed by the method of canonical discriminant analysis. These fuctions were based 
on elemental composition parameters: Al, Sn, Gd, Tb, Tm/Yb, Yb/Lu, Mo/Sn, Mn/Cr. The model 
thus created was capable of classifying known varietal wines at a succes rate of 95.83%.  
The predictive capability of the model was finally tested by the cross validation method. Classi-
fication effectiveness for unknown samples was determined at 70.83%. The results prove that 
the approach to varietal wine authentification presented in this paper is a promissing option in 
interregional varietal wine discrimination. 
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INTRODUCTION

Wine is globally one of the most widespread food commodities. Wines 
from renowned regions gain a high commercial value with time, which can 
lead to such problems as wine adulteration. The share of adulterated wines 
on the global market is rising and this trend is also observable in the Czech 
Republic. Control institutions are increasingly confronted with improper or 
falsely labelled products, which are sold as original ones in order to generate 
higher profits. Experts estimate the global proportion of falsified wines to be 
approximately 5% (Luykx et al. 2008). The European Union protects the  
authenticity of regional food in the regulations 2081/82 and 2082/92 (amen-
ded in 2006 – 510/2006 and 509/2006) on protection of indications of geo-
graphical origin and control of designations of agricultural products and food. 
These legal measures have encouraged researchers to try and find appropriate 
methodology for the determination of wine authenticity. 

The essence of viticulture and winemaking in the Czech Republic is the 
production of varietal wines. All comercially grown cultivars in the Czech 
Republic are tested and registered in the State Varietal Book. Until 2016, 58 
wine varieties had been registered in this book. Adulteration of varietal wi-
nes is relatively common. Varietal authenticity can be evaluated by determi-
nation of the chemical composition of wines with univariate and multivariate 
data processing. Most of the methods are based on the determination of orga- 
nic acids, amino acids (Hérnandez-Orte et al. 2002, PavLOušek, kumšta 2013), 
phenolic (BrOssaud et al. 1999, GOnzáLes-neves et. al. 2004, makris et al. 2006, 
vOn Baer et al. 2008, kumšta et. al. 2014) and volatile compounds (mateO, 
Jiménez 2000, nasi et al. 2008), DNA profiling (BaLeiras-COutO, eiras-diras 
2006) and also determination of the elemental composition of wine (aLmeida 
et al. 2003, GreenOuGH et al. 2005, CHarLtOn et al. 2010). Analysis of wine 
alone is only one part of the work. Selection of a suitable data analysis method 
is no less important. For the purpose of wine varietal authentification, data 
exploratory, discriminatory and classification techniques like principal com-
ponent analysis (PCA), linear discrimination analysis (LDA), hierarchical 
cluster analysis, soft independent modeling of class analogy (SIMCA) and 
others are commonly used as basic chemometric tools. These methods yield 
graphical and numerical representation of discrimination, mostly in the form 
of discriminatory functions, which can be further used for classification of 
uknown samples of wine (GOnzáLvez, Guardia 2013). 

The core of wine varietal discrimination and classification with the use 
of elemental profiling consists of the knowledge of physiological and metabo-
lical differences between the cultivars. The growth and development of plant 
roots are mainly determined by the genetic make-up of plants. Differences in 
root systems of Vitis vinifera L. are reflected in different uptake of minerals 
from soil. The root system of Vitis vinifera L. is composed of old and new 
roots which renew quite frequently. Old woody roots are strongly rooted in 
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the ground, which brings water and nutrients from deeper parts of soil. Evo-
lutionarily older and autochtonous cultivars of Vitis vinifera L. usually have 
more extensive roots in comparison with newly bred cultivars. New and old 
cultivars also vary in the ratio of woody and young roots (siddique 1990). 
Another difference can be observed in the grape maturation rate, oxygen 
defficiency sensitivity, waterlogging tolerance and, last but not least, in the 
accessibility to mycorrhizal symbiosis. This cooperation of root cells with 
fungal microorganisms has a significant impact on the rate of uptake of inor-
ganic nutrients, esspecially P, Ni, S, Mn, B, Fe, Zn, Cu, Ca and K. It also 
protects againts the toxic effects of metals like Pb and Cd. Another positive 
impact of this symbiosis can be observed in dry seasons. Fungal microorga-
nisms produce chelating agents, which increase the bioavalability of inorga-
nic nutrients in dry soil conditions. Beside roots, various cultivars also differ 
in plant morphology, e.g. height, leaf area, fruit size or density of foliage.  
All these factors may potentially affect grape must elemental profile and 
create a characteristic varietal fingerprint of specific Vitis vinifera L. culti-
vars. Mainly mass spectrometry and optical emmision spectrometry with 
inductivelly coupled plasma (ICP-MS and ICP-OES) were used for the purpo-
se of elemental analysis of wine in previously published studies (GreenOuGH 
et al. 2005, kment et al. 2005, martin et al. 2012).

The aim of this study was to assess possibilities of the discrimination 
and classification of Moravian varietal wines based on elemental composition 
data. An important objective was to find the variables in elemental compo-
sition which are strongly associated with a particular variety. These variab-
les must not be significantly influenced by other factors, like geographical 
provenance, environmental influences and effects of wine ageing. Tests were 
performed on three popular varieties: Rhine Riesling, Müller-Thurgau and 
Green Veltliner. Analysis of wine samples was carried out by the combina-
tion of ICP-MS and ICP-OES methods. Experimental data were evaluated by 
univariate and multivariate statistical methods, such as analysis of variance, 
principal component analysis and discriminant analysis. 

MATERIAL AND METHODS

Wine samples and preparation
A total of 24 white Moravian wines (Moravia is one of the two wine re-

gions in the Czech Republic) of 3 varieties (Green Veltiner – GV, Rhine 
Riesling – RR and Müller-Thurgau – MT) were gathered for the purpose of 
constructing a classification model. Samples were selected with an effort to 
evenly cover all Moravian wine subregions in order to eliminate influences of 
geographical origin. To suppress the climatic impact and effects of wine ageing, 
the sample set contained wines from three different vintages (2011- 2013). 

All samples were dilluted with deionized water in a 1:1 ratio (ELGA, 
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UK) to decrease the concentration of ethanol, which can cause instabillity of 
inductivelly coupled plasma tests (JakuBOwski et al. 1999, COetzee et al. 
2005). Immediately before analyses, all samples were passed through quan-
titative filtres with the pore diameter of 0.45 µm. 

Instrumental methods
For the purpose of the elemental analysis of wine, two different methods 

(ICP-MS and ICP-OES) were developed and validated. Most of the elemental 
parameters, except macro-elements (Mg, Ca, K, Na) and elements which 
were affected by spectral interferences, were determined by ICP-MS Thermo 
X-series (Thermo Fisher Scientific, USA) with a hexapole collision cell tech-
nology (CCT) working with He/H gas. Adverse changes in the signal during 
the measurement and matrix effects were corrected using internal standards 
(45Sc, 115In, 232Th), which were added into the system through a mixing device. 
Other elements were analysed on an ICP-OES Horiba Ultima 2 (Horiba 
Scientific, France). Instrumental settings are summarised in Table 1. A total 

of 40 elements were analysed: 7Li, 9Be, 111Cd, 118Sn, 121Sb, 137Ba, 139La, 140Ce, 
141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb, 175Lu, 
208Pb, 209Bi, 51V, 52Cr, 59Co, 60Ni, 65Cu, 75As, 89Y, 95Mo using ICP-MS and Al 
(396.152 nm), Fe (259.940 nm), Mg (285.213 nm), Mn (257.61 nm), Sr 
(421.552 nm), Zn (206.191 nm), Ca (422.673 nm), K (766.490 nm), Na 
(588.995 nm) using ICP-OES. In addition to the basic input data, elemental 
ratios were created to expand the dataset. Both instruments were calibrated 
by the standard addition method using 1 g L-1 standards (Analytika Praha, 
Czech republic), diluted as needed. Recoveries obtained for a spiked wine 
sample analysed in the same way as the original samples ranged between 93 
and 105%.

Table 1 
ICP-MS and ICP-OES settings

ICP-MS Parameter Value ICP-OES Parameter Value
RF power 1400 W RF power 1300 W
Gas argon Gas argon
Plasma gas 14 L min-1 Plasma gas 13 L min-1

Auxiliary Gas 0.6 L min-1 Auxiliary Gas 0.1 L min-1

Nebuliser Gas 0.8 L min-1 Nebuliser Gas 0.85 L min-1

Plasma view axial Plasma view radial
Nebuliser Meinhard Nebuliser Meinhard
CCT gas He/H Nebuliser pressure 0.3 MPa
CCT gas flow 6.5 mL.min-1

RF power – power of radiofrequency generator, CCT – collision cell technology
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Statistical analysis
Data analysis and statistical evalutation were performed in Microsoft 

Excel (Microsoft, USA), Statistica (Statsoft, USA), Unistat (Unistat, UK), XL-
stat (Addinsoft, France) and IBM SPSS (IBM, USA). Results were sorted out 
and processed by various statistical approaches. Each wine was represented by 
66 parameters. All samples were analysed as duplicates and the ICP-OES and 
MS methods were set for three scans for every sample. Before the main data 
analysis, results were tested for outliners and data distribution. The Grubbs 
test for outliners did not reveal any outlined values within the 3 tested groups 
of varietal wines and data showed a normal Gaussian distribution.

Analysis of variance (ANOVA) was used for pretreatment of the data to 
find variables which exhibited statistically significant differences between 
the varietal groups. Based on the fact that differences in the elemental com-
position between varietal wines are quite small, and due to the biological 
nature of the samples, ANOVA was set at a 90% confidence interval.  
The aim of this approach was to enlarge the dataset by adding the variables 
which were close to the border of a standard 95% interval. 

The number of selected variables was further reduced by PCA into a smal- 
ler number of principal components. The importance of original varia- 
bles for the newly calculated principal components was described as factor load-
ings. A loading can range from -1 to 1. Numbers close to 0 indicate weak in-
fuence of a variable. This method serves as a characterisation mechanism to 
find specific links between observed (wine samples) and original variables (ele-
mental composition). The main goal of this analysis was to find similarities and 
dissimilarities between different varietal wines and to obtain a potential wine 
grouping according to a corresponding cultivar. This was achieved by projecting 
the observations onto a 2D plane of the created principal components. 

For the purpose of discriminating wines into the corresponding 
groups, the canonical discriminant analysis method (CDA) was selected.  
It was used to build a predictive model for wine grouping, based on discri- 
minant fuctions calculated by linear combinations of variables. The discrim-
inant analysis was focused on the maximal separation of wine groups. This 
method was also used for discarding variables which are not significantly 
related to group differentiation. Variables were gradually added to the model 
on the basis of the forward stepwise selection until the point of the highest 
accuracy was reached. Input parameters were refined by a unidimensional 
test of equality of the means of the classes. The addition of variables into the 
model was approved by the F value (confidence interval 90%) and Wilk’s 
lambda criterium, which evaluates the importance of a variable for the accu-
racy of classification (the smaller a lambda value, the more important a given 
independent variable is for discrimination). Equality of the vectors was tested 
by the Rao`s approximation set at a 95% confidence interval. Discriminant 
functions were described by calculations of the standardised coefficient, fac-
tor structure coefficients and canonical correlation coefficient. 
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RESULTS AND DISCUSSION

Analysis of variance (ANOVA)
Innitially, it was important to determine variables which were specific 

for selected varietal wines. Analysis of variance (confidence interval 90%) 
was used for the determination of statistically important variables, which 
would show differences in mean concentrations between groups of varietal 
wines. On the basis of ANOVA, 3 statistically significant variables at P < 0.05 
and 5 variables on P < 0.1 were determined (Table 2). These variables (con-

centrations and ratios) are graphically presented in the form of box plots 
(Figure 1). The P and F values are shown in Table 2. The tested varietal 
wine groups differed mainly in the mean concentrations of rare earth ele-
ments (REE) and their ratios. Besides, differences were observable on amo-
unts of Al and Sn, and in ratios of Mo/Sn and Mn/Cr. 

The most significant univarietal difference in the elemental composition 
between cultivars within non-REE elements was found in the concentration 
of Al (P = 0.026 and F = 4.363). Plants have developed protective mecha-
nisms from the toxic effects of Al3+. Sensitivity of plants to adverse effects of 
aluminium differs between plant cultivars. These differences were described 
by FOy et al. (1992). The protective mechanism is based on releasing organic 
acids by roots, which causes immobilisation of aluminium by the complexa-
tion reaction. This effect was also studied by deLHaize (1993), who discovered 
that organic acid release is mediated by the activation of specific plasmatic 
membrane channels of root cells in case of their contact with aluminium 
ions. Minor differences between the cultivars in terms of root structure and 
genetic make-up of root cells are a probable reason of the Al mean concentra-
tion variations.

Other differences between varietal wines were found in the mean con-
centrations of transition metals Mo, Mn and Cr at P < 0.1. All these metals 

Table 2 
Variables with statistically significant differences between groups of varietal wines 

– selected by ANOVA

Variable F P
Tm/Yb 5.067 0.016
Al 4.363 0.026
Yb/Lu 4.333 0.027
Gd 3.326 0.056
Mo/Sn 3.241 0.059
Sn 3.126 0.065
Mn/Cr 3.005 0.071
Tb 2.603 0.098
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have a strong tendency towards forming complexes with plant and microbial 
ligands, which enhances their mobility from soil into plant. These three  
metals are usually found in soils together. Especially Mn and Cr are often 
bound together in one type of soil. Mo, Mn and Cr are highly significant in 
plant redox reactions by being part of metalloproteins. It can be expected 
that the way these elements are absorbed by plants is influenced by the  
activity of the root system, which differs between Vitis vinifera cultivars. 

In the group of rare earth elements, statistically significant variables 
proved to be the ratios Tm/Yb, Yb/Lu with P < 0.05 and elements Gd and Tb 
with P < 0.1. The REEs in soils are usually bound together, mostly in the 
form of phosphates, fluorides, silicates and carbonates. These elements occur 

Fig. 1. Box plot of variables selected by ANOVA. Values are presented in µg dm-3,  
ratios are undimensional. The bottom and top of the box is 25th and 75th percentile.  

The horizontal line inside the box is the median 
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in various depths of the litosphere (aLex et al. 1998). It was confirmed that 
REEs can have both positive and negative effects on the viability of plants. 
For example, FasHui et al. (2002) found that most of the REEs can enter 
chlorophyll, where they can substitute Mg2+ and create REE-chlorophyll. This 
substitution was observed in spinach and it was reflected in a higher growth 
activity in comparison with the control. As for the negative effect, it has been 
found that Gd and other REEs probably block channels for calcium release 
in the endoplasmatic reticulum (JOHannes et al. 1992, sCHwenke,waGner 
1992, kLüsener et al. 1995). These are just a few examples of the effects of 
REEs on plants. Similarly to the aforementioned significant elements, the 
transport of REEs through the grapevine is mediated by the structure and 
activity of the roots. REEs are distributed in plants in decreasing concentra-
tions from roots to fruit, so the final concentration in wine is on an ultratra-
ce level. Howewer, these small nuances seem to be enough for the discrimi-
nation of wine according to varieties.

Principal Component Analysis (PCA) and Canonical Discriminant 
Analysis (CDA)

After pre-sorting of the data by ANOVA, discrimination itself was perfor-
med by the PCA and CDA methods. Dimension of the 8 input variables was 
reduced to 3 principal components with an eigenvalue > 1 (Figure 2). Accor-
ding to the Kaiser’s criterion, components with eigenvalue less than one were 
excluded (F4, F5, F6, F7, F8). Selected principal components F1 (40.01%),  
F2 (25.65%) and F3 (15.51%) together carried 81.17% of the variability of the 
original data set (variance distribution of components is presented in Figure 2). 
Principal components were more or less positively and negatively correlated 
with the original variables (Figure 3 and Table 3). Component F1 was positi-

Fig. 2. Graphical summary of the variability of principal components F1 – F8
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vely correlated with REE and their ratios. Component F2 negatively correla-
tes with the elemental ratios Mn/Cr, Mo/Sn and strongly positively – with 
Sn. Another strong correlation was found between component F3 and para-
meter Al. Variables also correlated between each other. This is represented 
as a correlation matrix (Table 4). Significant intervariable connections can be 

Fig. 3. Projection of variables into the PCA factor plane of principal components F1 and F2 
(correlations between variables and factors)

Table 3
Factor loadings

Elements F1 F2 F3 F4 F5 F6 F7 F8

Sn -0.195 0.913 -0.151 0.133 0.115 0.151 0.227 0.003

Gd 0.954 0.126 -0.039 -0.211 -0.093 -0.093 0.064 0.084

Al 0.100 0.266 0.788 0.511 -0.108 -0.156 0.033 -0.002

Mn/Cr -0.067 -0.769 -0.447 0.382 -0.027 -0.143 0.194 -0.003

Mo/Sn 0.350 -0.712 0.514 -0.056 0.070 0.298 0.102 0.006

Tm/Yb 0.717 0.128 -0.361 0.492 -0.196 0.215 -0.113 -0.005

Yb/Lu 0.879 0.020 -0.042 0.197 0.419 -0.084 -0.061 -0.012

Tb 0.911 0.130 0.016 -0.335 -0.145 -0.065 0.102 -0.074

F1 - F8 – are principal components
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observed, as expected, in the REE group. These elements have very similiar 
chemical and physical properties. Other strong intervariable linear relation-
ships were not evident.

Best possible graphical characterisation of varietal wines was obtained 
by the dispersion of observations onto a 2D factor plane of principal compo-
nents F1 and F2 (Figure 4). These two principal components describe 65.66 
% of the original data variability. A 3D graphical representation including 
principal component F3 (15.51% of variability) was not used due to the com-
plicated and confusing representation of the data in the plot. PCA scores of 
each wine were dispersed into a factor plot of principal components 1 and 2 
(Figure 4). It could be observed that samples divided into 3 clusters. With a 
few exceptions, wines were grouped together according to varieties. The PCA 
scores of GV wines were projected with a positive score of F2 component.  
RR wines were projected in the second and fourth quadrant of the PCA plot. 
Finally, MT wines’ projection can be observed in the third quadrant, in the 
zone of the negative score of F1 and F2. 

Specific freatures of the elemental composition of each wine variety were 
evaluated by the combination of observations and projection plots of variables 
(Figures 3, 4). The RR wines have positive scores for F1 component, which is 
strongly correlated with REEs. This implies that this variety is characterised 
by higher average concentrations of REEs compared to MT and GV. The GV 
wines are distinguished by a higher average concentration of Sn while the MT 
winde have a higher average Mn/Cr ratio. Both MT and GV varieties are cha-
racterised by a relatively lower content of REE. Further analysis of the PCA 
wine projection showed that some of the wine samples were not correctly clas-
sified into a corresponding group. Two RR and one MT sample were placed 
into the group of GV wines and also one MT sample was incorrectly classified 
into the group of RR varietal wines. This was probably caused by relative 
similarities in the elemental composition of the tested cultivars and also by 

Table 4
Pearson correlation matrix of the variables (PCA)

Elements Sn Gd Al Mn/Cr Mo/Sn Tm/Yb Yb/Lu Tb

Sn 1* -0.058* 0.103* -0.403* -0.596* 0.006 -0.100* -0.023*

Gd -0.058* 1* 0.059* -0.206* 0.216* 0.633* 0.757* 0.972*

Al 0.103* 0.059* 1* -0.362* 0.236* 0.060* 0.001 -0.031*

Mn/Cr -0.403* -0.206* -0.362* 1* 0.135* 0.101* 0.071* -0.227*

Mo/Sn -0.596* 0.216* 0.236* 0.135* 1* 0.027* 0.181* 0.220*

Tm/Yb 0.006 0.633* 0.060* 0.101* 0.027* 1* 0.607* 0.540*

Yb/Lu -0.100* 0.757* 0.001 0.071* 0.181* 0.607* 1* 0.699*

Tb -0.023* 0.972* -0.031* -0.227* 0.220* 0.540* 0.699* 1*

* Values different from 0 at the significance level 95%
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random errors in the analysis. Explanation of this result may be based on ge-
netical connections between RR and MT cultivars. The cultivar Riesling was 
bred by crossbreeding Müller-Thurgau and Madeleine roayale cultivars. The 
effectiveness of PCA differentiation of samples into the groups of varietal wi-
nes, despite some inaccuracies, is still realatively high (83.3%). 

The original dataset was used to assemble the canonical discriminant 
fuctions and classification functions. These fuctions were applicable for 
mathematical description of the characteristics of different wine varieties 
and for the identification of a variety of known and unknown samples. These 
functions were constructed by the method of canonical discriminant analysis. 
Two discriminant fuctions, for differentiation of wines on the basis of ele-
mental composition, were calculated. The Rao’s approximation set at a 95% 
significance level proved that at least one of the vectors of the means was 
different from another, which confirmed statistical significance of the fuc-
tions (Table 5). Discriminant fuctions and variable contributions are presen-
ted in Table 6. Graphical visualisation of the variable - function correlations 

Fig. 4. Projection of the PCA score of varietal wine into a 2-D factor plane of principal  
components F1 and F2 

■ MT – Müller Thurgau; □ RR – Rhine Riesling; ● GV – Green Veltliner
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is presented in Figure 5. A detailed description and characteristics of the 
fuctions can be found in Table 5. Standardised coefficients and a structure 
matrix are presented in Table 7. Beside the discriminant fuctions, another 
important output of this analysis is the predictive classification functions 
(Table 8). These fuctions can be used for classification of wine samples of 
uknown variety. 

Discrimination of individual wine samples is graphically presented in a 
scatter plot (Figure 5), where almost complete discrimination of the varieties 
can be observed. All three clusters shows sufficient resolution of the discrimi-
nation with centroid distances > 3 (Table 9). The greatest distance between 
wine variety centroids is in the case of GV and MT. The nearest centroids of 
varietal groups are RR and MT. As mentioned above, those two cultivars are 
genetically connected, which can explain these relatively small distances.  
On the basis of discriminant fuctions, it was possible to divide the wines of 
known varieties into correct groups at a succes rate of 95.83% (Table 10).

Table 5
Rao’s approximation and detail characteristics of the discriminant fuctions

Function Eigenvalue Per cent 
variability

Cumulative 
variability

Correlation 
coefficient

1 3.957 75.69% 75.69% 0.894
2 1.271 24.31% 100.0% 0.748

Wilks‘ Lambda Chi-Square degrees of freedom P
1 0.089 42.36 16 0.0003
2 0.440 14.35 7 0.045

95% significance level

Table 6
Discriminant fuctions presented as raw and standardised coefficients for canonical variables

Elements
Function 1 Function 2

raw standardized raw standardized

Constant -0.0001 -13.49

Sn 0.104 -0.174 0.421 0.704

Gd 0.011 -0.917 0.005 0.448

Al -0.003 1.527 -0.001 -0.446

Mn/Cr 0.0001 -0.001 -0.021 -0.664

Mo/Sn 1.253 -1.458 0.794 0.924

Tm/Yb -51.87 0.691 52.90 0.705

Yb/Lu 2.201 -0.953 1.596 0.691

Tb -0.094 1.742 -0.051 -0.941
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To verify the functionality and robustness of the classification model, it 
was necessary to perform cross-validation test. This test was carried out by 
the exclusion of one specific observation from the model which acted as a 
unknown sample. The predictive ability of the model was then tested by the 
newly constructed model. Every wine sample was removed one by one and 
tested. The succes rate of correctly classified samples was 70.83% (Table 11). 
This poorer predictive capability, in comparison with the discrimination mo-
del (which was almost 100%), is due to several factors, for example an exc-
luded sample is not classified using the discriminator which described the 
variety. Another factor is connected with cross-validation methodology itself. 
In this case, when a model is based on 24 (3x8) samples, by exlusion of one 

Fig. 5. Canonical discriminant analysis score plot. F1 and F2 are canonical discriminant fuctions
▲ MT – Müller Thurgau), ● RR (Rhine Riesling, ■ GV – Green Veltliner
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Table 7
Structure matrix of discriminant functions

Elements
Structure matrix

function 1 function 2
Sn 0.257 0.170
Gd 0.063 0.487
Al 0.319 0.099
Mn/Cr -0.235 -0.232
Mo/Sn -0.254 0.203
Tm/Yb 0.147 0.558
Yb/Lu -0.081 0.552
Tb 0.037 0.437

Table 8 
Predictive classification functions of varietal wines

Variable MT RR GV
Sn 1.964 2.75 1.589
Gd -0.718 -0.727 -0.768
Al 0.001 0.004 0.013
Mn/Cr -0.219 -0.268 -0.224
Mo/Sn 7.160 6.622 1.654
Tm/Yb 1047 1270 1295
Yb/Lu 62.91 62.44 53.29
Tb 1.778 1.839 2.193
Constant -214.6 -244.6 -218.1

MT – Müller Thurgau, RR – Rhine Riesling, GV – Green Veltliner

Table 9 
Distance between centroids of wine cultivar clusters on the plane  

of discriminant fuctions F1 and F2

Centroid Centroid distances
RR - MT 3.026
GV - RR 3.369
GV - MT 4.545

RR - MT – distance between Rhine Riesling and Müller Thurgau cluster 
centroids, GV - RR – distance between Green Veltliner and Rhine Ries-
ling cluster centroids, GV - MT – distance between Green Veltliner and 
Müller Thurgau cluster centroids
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of the observations, the mathematical model loses an important amount of 
source data (12.5% from the varietal group), which can deteriorate an overal 
integrity. A solution to this problem might be some expansion of the wine 
samples database. 

Direct comparison of the results obtained in the present study with refe-
rences was not possible because of the original nature of this work. No artic-
les dealing with the use of non-combined elemental analysis as a tool for 
varietal authenticity had been published before. However, it is possible to 
make a comparison with studies using other analytical methods. In most 
cases, the discrimination is based on data obtained by analysis of organic 
compounds in wine by HPLC, GC or NMR (makris et al. 2006, nasi et al. 
2008, GOdeLmann et al. 2013). Geana et al. (2014) used the elemental compo-
sition of wines combined with their phenolics profile for discrimination of  
22 Drasagani wines from Romania. PCA analysis was based on variables Cs, 
Na, Zn, Ni, U, Ba, (+)-catechin, ferulic acid and resveratrol. It was possible 
to differentiate a Drasagani wine variety from other varieties grown in the 
Dragasani vineyard at a 100% success rate. Another closely related study, 
which employed elemental parameters (Ca, Li, Fe and Si) combined with 
organic parameters (shikimic acid and ethanolamine), was conducted by 
CHarLtOn et al. (2010). Their aim was to classify Czech, Hungarian, Roma-
nian and South African wines according to varieties and vintages. Data eva-
luation was performed by Classification and Regression Tree (CART) and 
Discrimination Partial Least Squares (DPLS). The accuracy of the classifica-
tion determined by CART was 65% and almost 100% by DPLS. This relati-

Table 10 
Classification matrix of known samples of varietal wines – discrimination 

efficiency

Variety MT RR GV Total Correct (%)
MT 8 0 0 8 100.0
RR 1 7 0 8 87.50
VZ 0 0 8 8 100.0
Total in group 9 7 8 24 95.83

MT – Müller Thurgau, RR – Rhine Riesling, GV – Green Veltliner

Table 11 
Matrix of cross-validation – predictive efficiency

Variety MT RR GV Total Correct %
MT 5 3 0 8 62.50
RR 2 6 0 8 75.00
GV 0 2 6 8 75.00
Total in group 7 11 6 24 70.83
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vely high disparity in the classification accuracy shows that selection of a 
suitable statistical method is equally important as precision of laboratory 
determinations. A different approach was chosen by kumšta et al. (2014). 
Wine anthocyanin fingerpriting was used for discrimination of Blaufrankish, 
Blauer Portugieser and Saint Laurent varieties of red wine. In the work of 
kumšta et al, the dataset was composed from results of analyses of 17 wines. 
Principal Component Analysis was used in that case as the preselection of 
variables for Canonical Discriminant Analysis. Combination of PCA with 
CDA resulted in 100% differentiation of 17 wines of three cultivars. Lampíř 
(2013) has successfully used data from RP- HPLC analysis of phenolic sub-
stances in 27 Czech varietal wines for differentiation of 7 cultivars. Data 
were analysed by Canonical Variate Analysis (CVA) and achieved a 100% 
success rate of discrimination. Beside elemental analysis and chromato-
graphy, a combination of mid-infrared spectroscopy (MIR) and UV-VIS spec-
troscopy of phenolic wine extracts was used by edeLmann et al. (2001) for 
discrimination of red wine cultivars. To remove spectral interferences from 
nonspecific carbohydrates and organic acids, solid phase extraction was per-
formed. Data analysis was realised by Hierarchical Cluster Analysis and soft 
Independent Modeling of Class Analogy (SIMCA). The discrimination rate of 
97% was achieved for 4 red cultivars with data from MIR spectroscopy. Eva-
luation of spectra from UV-vis spectroscopy resulted in discrimination of just 
2 from the 4 tested cultivars. Compared to previously published articles, it is 
obvious that the system presented here ensures very similar efficiency of  
discrimination of varietal wines from a specific wine-growing area. It cannot 
be expected that this approach will be universal for varietal wines from geo-
graphically different areas due to the influence of the climate and soil cha-
racteristics. However, specific regional models for differentiation of the most 
popular varietis can be constructed.

CONCLUSIONS

The basic premise underlying discrimination of varietal wines with the 
help of elemental analysis arose from the physiological and metabological 
differences between Vitis vinifera L. cultivars. Some of the differences were 
expected in the way of intake of inorganic and organic substances by the ro-
ots. This scientific hypothesis was confirmed by the elemental analysis of 
three tested wine varieties: Green Veltliner, Rhine Riesling and Müller
-Thurgau from Moravian region in Czech Republic. Differences in elemental 
composition within these three varieties were determined by ANOVA. Stati-
stically significant parameters were Tm/Yb, Al, Yb/Lu at P < 0.05 and Sn, 
Gd, Tb, Mo/Sn, Mn/Cr at P<0.1. These variables were further used for clas-
sification and discrimination by PCA and CDA. Principal component analysis 
distributed the observations into three groups according to variety with sa-
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tisfactory success rate. Finally, discrimination of the wines by CDA was 
performed. The use of classification functions resulted in the distribution of 
wines into varietal groups with succes rate of 95.83%. The predictive capabi-
lity of the model was finally tested by cross- validation. The test results were 
influenced by the smaller number of samples used to calculate the discrimi-
nation functions. The predictive success for uknown samples, determind by 
cross-validation, was 70.83%. 

The literature review suggests that chromatographic or combined tech-
niques focus on determination of specific organic compounds. These methods 
can demonstrate smaller differences between similar cultivars. They also 
ensure an acceptable degree of discrimination with a relatively small num-
bers of tested wines. It can be expected that simple elemental-based metho-
dology can be more susceptible to the incomplete distribution of crossbred 
wine varieties. From the results reported herein it is obvious that the effec-
tiveness of authenticity testing achieved by the methodology presented in 
this study (95.83%) is quite comparable the results found in previously pu-
blished articles. The main advantage of our approach is the relative simpli-
city of analyses when a robust and correctly validated method for elemental 
analysis of wine is prepared. The suggested solution is also economical and 
fast. A suitable area where simple elemental analysis with ANOVA – CDA 
can be applied to rapid discrimination of wines is when wines are made from 
grapes grown on cultivars with significantly genetically different root sys-
tems, which is the main differentiation factor. The robustness of the di-
scrimination methodology can be further increased by the expansion of the 
number of wine samples. Overall, the wine varietal authentification appro-
ach presented in this paper has proven to be a promising option for interre-
gional varietal wine discrimination. 
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