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Abstract

This study aimed to evaluate the effectiveness of graphene oxide (GO), nanoparticles (NPs), and
quercetin (QC) applications in alleviating salinity stress in two Mentha species: Mentha piperita
(peppermint) and Mentha spicata (spearmint). The experiment was conducted in a randomized
complete block design with three replications. Foliar applications of GO, NPs, and QC were
conducted over three consecutive days at concentrations of 0, 25, and 50 mg L. Following
a 48-hour interval, salinity treatments (0, 50, and 100 mM NaCl) were subsequently imposed
through soil irrigation. Phenolic compound contents in leaves were analyzed after treatments,
and data were subjected to one-way ANOVA followed by the Duncan’s multiple range test
(p<0.05). The treatments significantly affected the accumulation of phenolic compounds under
salt stress. GO application enhanced chlorogenic, hydroxybenzoic, and salicylic acids, while QC
increased caffeic, vanillic, and quercetin contents. NP treatment generally promoted the biosyn-
thesis of several phenolic acids, including catechinhydrate, p-coumaric, and rutin. In salt stress
experiments on M. spicata and M. piperita, chlorogenic acid content varied among treatments.
In M. spicata, the highest level was observed in 25 mg L'* GO + 50 mM NaCl (9.22 g kg?), while
in M. piperita, the maximum was recorded in 25 mg L' GO + 100 mM NaCl (6.49 g kg").
The lowest levels (0.00 g kg!) occurred in several treatments, including controls. These findings
indicate that the use of nanoparticles and bioactive compounds can mitigate the adverse effects
of salinity stress by modulating phenolic metabolism in Mentha species.
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INTRODUCTION

Mentha (mint) is a plant genus belonging to the Lamiaceae family, which
includes approximately 15-20 species (Keifer et al. 2007). Mint is an import-
ant commercial aromatic plant due to its aromatic fragrance, refreshing,
and pungent taste (Dolzhenko et al. 2010). In particular, peppermint extract
is widely used as a nutritional supplement in herbal or alternative medicine
(Anyaoku et al. 2023). Topical application or ingestion of peppermint (Mentha
piperita) extract induces a characteristic cooling effect, primarily due to
menthol, its principal bioactive compound. Menthol interacts with the tran-
sient receptor potential melastatin 8 (TRPMS8) channels located on sensory
neurons, thereby eliciting a cold sensation response (Liu et al. 2013).
In alternative medicine, mint acts as an antiseptic, antiviral, and stimulant
for alleviating conditions such as arthritis, rheumatism, menstrual cramps,
and toothache; it also plays an important role in the treatment of the flu,
cold, and swelling (Hestmati et al. 2016, Tanu, Harpreet 2016). Its leaves
can be consumed fresh or dried, either alone or in herbal infusions combined
with other plants (Anyaoku et al. 2023). Moreover, mint is used in the pro-
duction of ice cream, confectionery, canned food, beverages, chewing gum,
toothpaste, soap, shampoos, and skincare products (Salehi et al. 2018, Anyaoku
et al. 2023).

As with many plants, the growth and development of mint plants are
significantly influenced by environmental factors (Nikolova, Ivancheva 2005,
Clark, Menary 2008). Soil salinity, in particular, reduces germination rates
and viability in plants, negatively impacting various physiological processes
such as morphological characteristics, photosynthesis, and respiration.
As a result, it leads to losses in growth, development, and essential oil yield
and quality (Rout, Shaw 2001, Parida, Das 2005, Sosa et al. 2005, Aziz et al.
2008a, Baghalian et al. 2008). Furthermore, salinity disrupts cell functions
in different mint species, slows down plant growth, and reduces photosynthesis
by decreasing leaf number, area, plant height, plant weight, and chlorophyll
content in the leaves (Aziz et al. 20086, El-Danasoury et al. 2010, Khorasani-
nejad et al. 2010, Baydar, Coban 2017, Kuzucu 2021).

Numerous studies have been conducted to minimize the destructive
effects of salt stress on plants (Seleiman, 2023, Qian et al. 2024). In this
context, the use of nanoparticles (NPs) has gained attention as a potential
solution in recent years. It is emphasized that more research is needed on
the effects of nanoparticles on aromatic plants (Isayenkov, Maathuis 2019,
Toannou et al. 2020, Mohammadi et al. 2021).
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MATERIALS AND METHODS

Plant material and growth conditions

This study was conducted in 2022, in the plant production greenhouse
of the Department of Horticulture, Faculty of Agriculture, Kilis 7 Aralk
University (Kilis, Tirkiye). The greenhouse conditions were maintained
at a daytime temp. of 34°C, a nighttime temp. of 18°C, and relative humidity
ranging from 50% to 60%. Two mint species, Mentha spicata L. and Mentha
piperita L., were used as experimental material. On March 15, seeds were
sown in seed trays kept in the greenhouse, and afterwards irrigation was
applied every two days to promote uniform germination. When seedlings
reached the four-leaf stage, they were transplanted into 3 L plastic pots,
with three plants per pot.

Ten days after transplanting, the plants were subjected to salt (NaCl)
stress treatments. Foliar applications of quercetin, graphene oxide, and
nanoparticles (0, 25, and 50 mM) were performed for three consecutive days.
Forty-eight hours after the final foliar application, 200 mL of 50 mM NaCl
solution was applied to the soil every two days for one week. Subsequently,
different concentrations of NaCl (0, 50, and 100 mM) were administered,
and plants were monitored daily until they approached the wilting point,
at which time salt applications were terminated. The experiment was arran-
ged in a randomized complete block design with three replications. After
harvesting (6 weeks after transplanting), leaves were ground to fine powder
and stored in ziplock bags at -20°C until analysis. Phenolic compound pro-
files of the leaf extracts were subsequently determined.

Characteristics of the trial soil

The mineral content analysis of samples of the soil used in this study
was performed according to the method described by Petropoulos et al.
(2018). The samples were dried at 72°C, and 0.5 g of each sample was com-
busted in a microwave at 200 W for 30 minutes. After combustion, the sam-
ples were filtered, transferred to 50 mL tubes, and diluted to 25 mL with
distilled water. The concentrations of calcium (Ca), magnesium (Mg), iron
(Fe), manganese (Mn), zinc (Zn), and copper (Cu) were measured using
Atomic Absorption Spectroscopy (AAS). Nitrogen (N) was analyzed using
the Kjeldahl method; phosphorus (P) was determined by spectrophotometry,
and potassium (K) was measured using Flame Photometry. Electrical con-
ductivity (EC) of the soil was measured as 2.2 dS m!, indicating a moderate
salinity level consistent with values reported in similar studies. The results
of the physical and chemical analysis of the soil used in the experiment are
presented in Table 1.



176

Table 1
Experimental soil properties
N | p | K | ca | Mg | Fe | cu | zn | wm
(mg kg)
0.361 | 10.24 | 245.73 | 3348.4 | 499.13 | 15.75 | 3.08 | 0.76 | 15.48

Extraction of plant samples

After harvesting, plant samples were carefully cleaned, subdivided into
smaller portions, and dried at room temperature. The dried material was
ground into fine powder in a laboratory grinder. One gram of the powdered
leaf samples was extracted with a solvent mixture of methanol/chloroform/
water (7:2:1, v/v/v) for 48 h using an incubated orbital shaker (OHAUS
ISLDO4HDG) at 15°C. Following extraction, the homogenate was centrifuged
at 5000 rpm for 15 min, and the supernatant was filtered through Whatman
No. 1 filter paper. The extraction procedure was repeated three times
with the same plant material to ensure complete recovery of the residues.
The combined filtrates were evaporated to dryness using a rotary evaporator
(Heidolph 94200, Bioblock Scientific). The vacuum-dried extracts were stored
at +4°C until chromatographic analysis for the determination of phenolic
compounds.

Analysis of phenolic compounds by RP-HPLC

The phenolic compound content of the leaf extracts was analyzed using
reverse-phase high-performance liquid chromatography (RP-HPLC) with
an Agilent 1260 Infinity system (USA). Phenolic compounds were separated
on a C18 reverse-phase HPLC column (110 A, 5 um, 4.6 x 250 mm, ACE
Generix). The injection volume was set at 10 pL, and the mobile phases con-
sisted of Phase A (0.1% phosphoric acid in water) and Phase B (100% aceto-
nitrile) using a gradient elution system. The column oven temperature was
maintained at 30°C, and detection was performed with a diode array detector
(DAD). Phenolic compounds were quantified using the external standard
method, and identified based on their retention times. The results were
expressed as g kg! of dry weight (DW) to standardize the measurements and
eliminate variability caused by differences in leaf moisture content.

Statistical analysis

The results were analyzed using one-way analysis of variance (ANOVA)
for independent samples with SPSS 18 software, and significant differences
among treatment means were determined using the Duncan’s Multiple
Range Test at a 0.05 probability level (p<0.05). Principal Component Analy-
sis (PCA) was performed using PAST software to eliminate dependency
structures between variables and to reduce dimensionality. Heat maps were
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generated in ClustVis software to visually represent the relationships among
treatments.

RESULTS AND DISCUSSION

Effect of nanoparticles and stress applications on the phenolic
compound content of mint plants

This study investigated the effects of nanoparticle, quercetin, and
graphene oxide applications in alleviating salt stress, and focused on the
changes in phenolic compound levels in plants. The results indicated
species-specific responses to these treatments. Nanoparticle applications
generally led to a decrease in the levels of chlorogenic acid and vanillic acid
in both species, while increasing the levels of catechin hydrate, rosmarinic
acid, ferulic acid, and cinnamic acid. In Mentha piperita, significant increases
were observed in the levels of caffeic acid, p-coumaric acid, chrysin, rutin,
hydroxybenzoic acid, hydroxycinnamic acid, naringin, naringenin, o-coumaric
acid, and rosmarinic acid. On the other hand, Mentha spicata exhibited
a significant increase in resveratrol levels. When salt treatment was applied
along with nanoparticles, it also contributed to an increase in flavonoid
levels. Quercetin application resulted in an increase in the levels of caffeic
acid, vanillic acid, rutin, quercetin, naringin, o-coumaric acid, chrysin, and
flavonoids, while decreasing the levels of chlorogenic acid, hydroxybenzoic
acid, ferulic acid, and cinnamic acid. Graphene oxide application caused an
increase in chlorogenic acid, hydroxybenzoic acid, salicylic acid, resveratrol,
hydroxycinnamic acid, naringin, and flavonoid acids, while a decrease was
observed in catechin hydrate, vanillic acid, p-coumaric acid, rosmarinic acid,
ferulic acid, naringin, cinnamic acid, o-coumaric acid, and caffeic acid levels.

In the salt stress experiments applied to M. spicata and M. piperita,
changes in chlorogenic acid content were observed. In M. spicata, the highest
chlorogenic acid level was recorded in the 25 mg L' GO + 50 mM NaCl treat-
ment (9.22 g kg'! DW), while the lowest level (0.00 g kg'' DW) was observed
in the 50 mg L' QC + 100 mM NaCl and 25 mg L' NP + 50 mM NaCl treat-
ments. In M. piperita, the highest chlorogenic acid content was obtained
from the 25 mg L' GO + 100 mM NaCl treatment (6.49 g kg'! DW), whereas
the lowest content (0.00 g kg'! DW) was detected in the control group,
50 mM NaCl, 25 mg L' QC, 50 mg L' NP, 25 mg L'! QC + 100 mM NaCl,
50 mg L' QC + 50 mM NaCl, 50 mg L' QC + 100 mM NaCl, and
50 mg L' GO + 50 mM NaCl treatments. In a similar study by Petropoulos
et al. (2017), where the effects of salinity on the nutritional value, chemical
composition, and bioactive compound content of Cichorium spinosum
were studied, an increase in phenolic compounds, flavonoids, and antioxidant
activity was observed with the rise in salinity, supporting our findings.
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According to other data, the highest hydroxycinnamic acid content in
M. spicata was observed in the 50 mg L'* GO + 100 mM NaCl treatment.
The highest naringin content was found in the M. piperita species treated
with 25 mg L' QC (78.05 g kg'), while other treatments yielded 0.00 g kg*.
Studies on the use of nanoparticles to mitigate salt stress in plants have
shown significant increases in plant yield, total soluble sugars, antioxidant
enzymes, proline content, and total phenolics (Nasrallah et al. 2022).

Looking at the data obtained for M. spicata, the highest rosmarinic acid
content was found in the 50 mg L' NP treatment (406.76 g kg'), while the
lowest value was observed in the 25 mg L' NP + 100 mM NaCl treatment
(56.46 g kg'). In M. piperita, the highest rosmarinic acid content was
observed in the 25 mg L' NP treatment (255.33 g kg'!), and the lowest was
found in the control group (3.64 g kg?'). Dehghani et al. (2022) found that
Melissa officinalis under salt stress increased proline, phenolic compounds,
rosmarinic acid levels, gene expression, and phenylalanine ammonia-lyase
enzyme activity in comparison to M. officinalis plants exposed to a drought
stress as well as untreated plants.

In M. spicata, the highest flavonoid content was found in the
50 mg L'* NP + 100 mM NaCl treatment (4.17 g kg?), while the lowest
flavonoid content, including in the 50 mM NaCl group, was 0.00 g kg.
In M. piperita, the highest flavonoid content was found in the
25 mg L' GO + 100 mM NaCl treatment (3.13 g kg!), while the lowest
was observed in the control group and thirteen other treatments, where
the value was 0.00 g kg?! (Table 2). A study on cantaloupe (Momordica
charantia) investigated the responses to different NaCl salinity levels (0, 50,
and 100 mM) using leaf-applied nanoparticles (Cs-Se NP). In this study,
while there was a decrease in growth and yield, increases were observed
in morphological, biochemical, and physiological parameters (Sheikhalipour
et al. 2021).

Analysis of phenolic acid compounds

PCA analysis of the phenolic compound parameters in Mentha spicata
identified six factors with eigenvalues greater than 1 among the 17 variables
analyzed. The first principal component (PC1) was the most significant, ex-
plaining 24% of the total variation, followed by PC2 (16%), PC3 (13.1%), PC4
(11.7%), PC5 (7.5%), and PC6 (6.9%). Together, these six components ac-
counted for approximately 79% of the total variation (Table 3).

Principal component analysis (PCA) of phenolic compound properties in
Mentha spicata revealed four distinct clusters (Figure 1). The first cluster
included naringin, flavon, and o-coumaric acid, while the second comprised
resveratrol, caffeic acid, rosmarinic acid, vanillic acid, chlorogenic acid, and
catechin hydrate. The third cluster contained salicylic acid, rutin, quercetin,
hydroxybenzoic acid, and hydroxycinnamic acid, whereas the fourth consisted
of chrysin, naringenin, ferulic acid, and cinnamic acid. A strong positive
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Table 3

Eigenvalues and variance explained by principal components of phenolic compounds
in Mentha spicata

Component Eigenvalue Variance (%) Cumulative (%)
1 4.32144 24.008 24.01
2 2.87895 15.994 40.1
3 2.3647 13.137 53.15
4 2.11342 11.741 64.9
5 1.35395 7.522 72.43
6 1.25029 6.9461 79.38
7 0.838698 4.6594 84.04
8 0.769886 4.2771 88.09
9 0.630279 3.5015 88.32
10 0.585322 3.2518 91.58
11 0.287807 1.5989 93.18
12 0.2503 1.3906 94.58
13 0.130316 0.72398 95.31
14 0.0934062 0.51892 95.83
15 0.0586834 0.32602 96.16
16 0.0411656 0.2287 96.39
17 0.0212802 0.11822 100.0

correlation was observed between resveratrol and several compounds in the
second cluster, including caffeic acid, rosmarinic acid, vanillic acid, chloro-
genic acid, and catechin hydrate. Conversely, resveratrol showed a negative
correlation with salicylic acid.

These clustering patterns suggest that treatments involving nanoparti-
cles (NPs) and graphene oxide (GO) were more closely associated with the
accumulation of compounds in the second cluster, which are typically linked
to antioxidant defense and phenylpropanoid metabolism. In contrast,
the third cluster — comprising salicylic acid, rutin, and quercetin — appears
to reflect responses associated with salinity-induced stress signaling. This
distribution indicates that the GO and NP treatments modulated phenolic
metabolism differently compared with quercetin and control treatments,
leading to a distinct separation of phenolic profiles among the experimental
groups.

Figure 2 illustrates the changes in phenolic acid components in Mentha
spicata under various treatments. The highest flavon content was observed
in the 50 mg L' QC + 100 mM NaCl treatment, while the lowest was found
in the 50 mg L' GO group. Similarly, caffeic acid peaked in the 25 mg L't GO
treatment compared to the control. Notably, rutin, vanillic acid, catechin
hydrate, and chlorogenic acid levels were elevated in treatments containing
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graphene oxide, whereas quercetin and salt stress generally reduced their
concentrations. Resveratrol and rosmarinic acid increased with both
nanoparticle and graphene oxide applications, indicating potential roles
in stress mitigation. Overall, these data suggest that QC and GO treatments
modulate phenolic acid profiles, potentially enhancing the plant’s adaptive
responses under salt stress conditions.
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According to the principal component analysis (PCA) of phenolic com-
pound parameters in Mentha piperita, seven components with eigenvalues
greater than 1 were extracted from 18 variables (PC1: 4.55; PC2: 2.80; PC3:
2.19; PC4: 1.53; PC5: 1.49; PC6: 1.25; PC7: 1.15) — Table 4. The first princi-
pal component (PC1) accounted for approximately 26% of the total variance,
and the second (PC2) explained 16%, together totaling about 42% of the variance,
which was considered insufficient for robust statistical interpretation.
The applied treatments did not significantly affect flavonoid levels; however, the
highest concentrations of chrysin and caffeic acid were observed under
the combined quercetin + salt treatment.

Table 4

The distribution of the first and second principal components of the phenolic compound
properties of Mentha piperita

Component Eigenvalue Variance (%) Cumulative (%)
1 4.55246 25.91 25.91
2 2.80734 15.596 41.51
3 2.198 12.211 53.72
4 1.53983 8.5546 62.28
5 1.4967 8.315 70.60
6 1.25409 6.9672 77.57
7 1.15506 6.417 83.99
8 0.872404 4.8467 88.74
9 0.563141 3.1286 91.87
10 0.532094 2.9561 94.73
11 0.341834 1.8991 96.13
12 0.252685 1.4038 97.54
13 0.152099 0.84499 98.39
14 0.132208 0.73449 99.03
15 0.0874832 0.48602 99.51
16 0.050139 0.27855 99.79
17 0.00761901 0.042328 99.83
18 0.00481689 0.02676 100.0

The PCA biplot (Figure 3) demonstrates clear separations in phenolic
and flavonoid profiles among the different treatments. The first two compo-
nents capture the majority of the variance, distinctly separating the QC- and
GO-containing treatments from the control and NaCl-only treatments. Rutin,
caffeic acid, and chlorogenic acid showed strong associations with the QC
and GO treatments, while naringenin and resveratrol were more closely clus-
tered with the NaCl treatments. This distribution suggests that QC and GO
may enhance plant tolerance to salt stress by modulating the accumulation
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Fig. 3. Principal component analysis of phenolic acid components in Mentha piperita

of secondary metabolites. Overall, the combined application of QC and GO
appears to guide phenolic and flavonoid profiles toward a more balanced
metabolic state under NaCl stress.

The heatmap (Figure 4) clearly shows how different treatments affected
phenolic and flavonoid levels. Salt stress (NaCl) generally reduced the accu-
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mulation of most metabolites, suggesting that ionic stress limits secondary
metabolism. In contrast, applying quercetin (QC), either alone or together
with NaCl, increased certain antioxidant compounds, including naringenin,
resveratrol, and caffeic acid. These changes suggest that QC may help the
plant cope with oxidative stress.

Interestingly, treatments combining graphene oxide (GO) and QC formed
a separate cluster. In particular, GO + QC + NaCl treatments displayed
a more balanced profile than NaCl alone, implying that GO might support
QC’s protective effects. Hydroxybenzoic acid, ferulic acid, and rutin were the
most responsive metabolites, highlighting their importance in stress adapta-
tion. Overall, the data suggest that co-applying GO and QC under salt stress
can modulate phenolic metabolism and potentially enhance plant resilience.

CONCLUSIONS

This study investigated the effects of salt stress and the applications of
nanoparticles (NP), graphene oxide (GO), and quercetin (QC) on the phenolic
compound profiles of Mentha piperita and Mentha spicata. The results
demonstrated that NP and GO treatments positively modulated phenolic
metabolism by increasing levels of rosmarinic acid, resveratrol, and certain
flavonoids. QC application enhanced specific compounds, including caffeic
acid, rutin, and quercetin, supporting plant responses under salinity stress.
Principal Component Analysis (PCA) and clustering revealed that NP and
GO treatments produced distinct phenolic profiles compared to QC and con-
trol groups. Overall, NP and GO applications effectively mitigated the
adverse effects of salt stress and enhanced phenolic compound accumulation,
suggesting their potential utility for improving stress tolerance and phenolic
content in Mentha species under saline conditions.
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