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Abstract

Salinity is a detrimental abiotic stress that occurs in arid and semi-arid environmental conditions. 
Salinity adversely affects the growth, yield, and quality of plants. Some plants are sensitive to salt 
stress, while others are more resistant owing to the tolerance mechanisms induced by physiologi-
cal, biochemical, and molecular responses. The present study was conducted to investigate the 
effects of mycorrhizal colonization (Glomus clarum) and silicon (Si) under different salinity levels 
on the activity of antioxidant enzymes, such as super oxide dismutase (SOD), catalase (CAT), 
ascorbate peroxidase (APX), and glutathione oxidase (GPX) and lipid peroxidation (MDA), of salinity 
sensitive (cv. Demre) and tolerant (cv. Karaisali) pepper cultivars. Three diffe-rent salt doses  
(0 mM NaCl, 75 mM NaCl, 150 mM NaCl), with AM and 2 mM K2SiO3, were applied into 4-L 
vermiculite-containing pots with pepper plants. The antioxidant enzyme activities increased  
following the increasing salt doses. All antioxidant enzymes were observed to display differences 
in their activity in the two pepper genotypes that differed in salt sensitivity. Catalase, ascorbate 
peroxidase, and glutathione reductase activities were higher in the salt-sensitive pepper genotype. 
Si and mycorrhiza treatment improved the defense mechanisms in peppers, and attenuated  
the oxidative damage in cellular functional molecules caused by the overproduction of reactive 
oxygen species (ROS) under salt stress. Therefore, mycorrhiza and silicon applications, resulting 
in increased salt tolerance, can be used in areas with salinity problems.
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INTRODUCTION

Salinity is a major abiotic stress that negatively impacts crop productiv-
ity and quality (Hirt and Shinozaki 2003). It is projected that salinization 
will lead to a loss of 30% of cultivable land within the next 25 years and up 
to 50% within 40 years (Ruiz-Lozano et al. 2012). Salt stress symptoms vary 
by plant species and manifest as numerous morphological, physiological, mo-
lecular, and cellular disturbances. These include reduced photosynthesis, ion 
toxicity, oxidative stress, and nutrient imbalances (Manivannan et al. 2016, 
Hegazi, El-Shraiy 2017).

In response to abiotic stress, plants adopt various strategies to maintain 
growth and productivity. These adaptations involve changes in morphology 
(growth plasticity), as well as physiological and biochemical modifications 
(Fahad et al. 2015). Salt stress in particular induces excessive accumulation 
of reactive oxygen species (ROS), such as superoxide radicals (O2

–), hydroxyl 
radicals (•OH), singlet oxygen (¹O2), and hydrogen peroxide (H2O2), which 
collectively cause oxidative damage to cells (Khoshgoftarmanesh et al. 2014). 
To counteract this, plants rely on antioxidant defense systems comprising 
both non-enzymatic antioxidants (e.g., ascorbic acid, glutathione, carotenoids) 
and enzymatic antioxidants e.g., superoxide dismutase (SOD), ascorbate per-
oxidase (APX), and glutathione reductase (GR) – Fahad et al. (2015), Hegazi, 
El-Shraiy (2017).

Hydrogen peroxide (H2O2), a particularly harmful ROS, is detoxified by 
catalase (CAT) and peroxidases into water and oxygen (Zhu et al. 2004). 
APX, GPX, and CAT enzymes each scavenge H2O2 through distinct mecha-
nisms, with APX utilizing the ascorbate-glutathione cycle – a regeneration 
system involving ascorbate and glutathione (Sofo et al. 2015). In this cycle, 
oxidized ascorbate is reduced by glutathione (GSH), which in turn is regen-
erated from its oxidized form (GSSG) by GR using NADPH (Yasar et al. 
2006, Kusvuran et al. 2007). Plants with high levels of these antioxidants, 
whether constitutive or stress-induced, demonstrate greater resistance  
to oxidative damage (Turkan et al. 2005, Kusvuran et al. 2013).

Silicon (Si), although not classified as an essential nutrient, is widely 
recognized for its beneficial effects in enhancing plant resilience to environ-
mental stressors (Coskun et al. 2016). Si contributes to stress mitigation 
through structural support and by triggering metabolic responses that  
include enhanced antioxidant activity (Luyckx et al. 2017). Under salt stress, 
Si application has been shown to improve plant growth and reduce ROS lev-
els by increasing CAT and APX enzyme activities, thus reducing oxidative 
damage and malondialdehyde (MDA) levels (Manivannan et al. 2016, Kim  
et al. 2017).

Arbuscular mycorrhizal (AM) fungi, such as Glomus clarum, naturally 
occur in most soils and colonize the roots of numerous plant species. These 
symbiotic fungi promote plant growth and productivity by enhancing the 
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uptake of essential nutrients, particularly phosphorus, and by modulating 
plant hormonal responses (Jansa et al. 2019, Diagne et al. 2020, Song et al. 
2020). AM fungi also contribute to improved photosynthesis, osmotic balance, 
and resistance to environmental stressors. Mycorrhizal inoculation can  
further reduce the need for fertilizers by increasing nutrient use efficiency 
(Xie et al. 2022). This study aims to investigate the effects of mycorrhizal 
inoculation with Glomus clarum and silicon application on mitigating salt 
stress and to explore their relationship with antioxidant enzyme activity  
in salt-sensitive and salt-tolerant pepper (Capsicum spp.) genotypes.

MATERIALS AND METHOD

Experimental design
Two different local pepper genotypes, of which the salt sensitivity had 

been determined in previous studies (Altuntas et al. 2016), were used in this 
study. The Karaisali genotype was salt stress-tolerant, while Demre was  
a salt stress-sensitive genotype (Figure 1). Mycorrhizal inoculum of Glomus 

clarum was obtained from Cukurova University, Agriculture Faculty, and 
silicon (K2SiO3) fertilizer was purchased from Merck company (Sigma- 
-Aldrich, 792640). The study was carried out in climate chambers adjusted to 
16 h light at 24°C and 8 h dark at 20°C. The relative humidity was about 
60-65% and the photosynthetic photon flux density was about 300 µmol m-2 
s−1 at plant height. The pepper seeds were sown to a 1/2 peat + 1/2 perlite 
mixture using vials. Three seedlings at 45 days were planted in 4-L vermic-
ulite-containing pots. The seedlings were irrigated with ½ Morgan and  
Lennard (2000) nutrition solutions. The layout of the experiment was a ran-
domized block design with three replicates and three plants in each repeti-
tion. Silicon (K2SiO3) and salt (NaCl) were only added in the silicon and salt 
treatments (NaCl) – Figure 2.

Fig. 1. Effect of mycorrhiza on the root growth of the varieties Karasali and Demre  
under salt stress (75 and 150 mM)
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Salt, silicon, and mycorrhizal inoculation treatments
Following 15 days of growth in the pots, the seedlings were subjected  

to salt stress with different NaCl doses (0, 75, 150 mM). The applied amount 
of water in the study was calculated according to the drained water/applied 
water ratio, which was approximately 30%. The seedlings were initially  
irrigated with water containing 50 mM salt to avoid osmotic salt shock,  
and the salt dose was gradually increased until reaching 150 mM. In addi-
tion to the salt, 2 mM K2SiO3 was applied. A hundred spores per plant  
of vermiculite based inoculum of Glomus clarum were placed in a pot, before 
transferring seedlings, to facilitate fungal colonization of plant roots. 

Lipid peroxide content
Lipid peroxidation was determined in terms of the malondialdehyde 

(MDA) content using the thiobarbituric acid (TBA) reaction proposed by 
Madhava and Sresty (2000). A total of 0.5 g leaf samples was homogenized 
with TCA (trichloroacetic-11 acid) and centrifuged at 10 000 rpm for 5 min. 
A mixture of TBA- (2-thiobarbituric acid) and TCA- (trichloroacetic acid) was 
added to the supernatant. The mixture was kept at 95oC for 30 min and cen-
trifuged at 10000 rpm for 15 min. The enzymatic activity was measured by 
the absorbance changes between 532 and 600 nm. The MDA content was 
calculated using the molar extinction coefficient of MDA (155 mM-1 cm-1).

Enzyme analyses and preparation for the extraction
About 0.5 g of fresh leaf sample was homogenized with 0.1 mM  

NaEDTA-containing 50 mM phosphate buffer (pH 7.6) using liquid nitrogen 
(5 ml). Then, the samples were centrifuged at 15 000 rpm and +4°C for  
15 min. The supernatants were used in the enzyme and protein analyses. 
The catalase enzymatic activity was determined using the degrada- 
tion of H2O2 (E=39.4 mM cm-1) (Cakmak, Marschner 1992). The ascorbic  
peroxidase activity was measured using the ascorbic oxidation rate  

Fig. 2. Effect of mycorrhiza on root development under salt stress
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(E=2.8 mM cm-1) method proposed by Nakano and Asada (1981). The gluta-
thione reductase activity was measured using the NADPH oxidation  
(E=6.2 mM cm-1) method proposed by Foyer and Halliwell (1976). 

Statistical analyses
The data were first tested for normality using the Kolmogorov-Smirnov 

test. When data did not fit normal distribution, non-parametric Kruskal- 
-Wallis tests were performed, and if the assayed data were significant,  
a multiple comparison Z-values test was performed using the DunnTest 
function in Sigma plot 14.0 software. Mean comparisons were performed 
with one-way analysis of variance (ANOVA) followed by post-hoc tests, 
Tukey’s honestly significant difference (HSD) tests for all-pair comparisons, 
and Dunnett’s comparisons for the control system, and terms were consi- 
dered significant at P<0.05 by SPSS 26.0 software.

RESULTS AND DİSCUSSİON

The effects of silicon (Si) and arbuscular mycorrhizal fungi (AMF) on salt 
stress in both salt-sensitive and salt-tolerant pepper genotypes were investi-
gated, with a focus on enzyme activity. The results showed that all treat-
ments significantly increased enzyme activities under both 75 mM and 150 
mM NaCl salinity levels. According to enzyme analyses conducted at 15, 30, 
and 45 days after salt treatment (DAST), the highest catalase (CAT) activity 
was observed in the salt-tolerant Karaisali cultivar treated with Si and AMF 
under 150 mM NaCl, reaching 2206.43 and 2178.0 µmol min-¹ mg-¹ FW,  
respectively.

CAT activity increased under 75 mM NaCl and peaked in both Karaisali 
and Demre cultivars at 150 mM NaCl (Figure 3). Notably, CAT activity  
in plants treated with Si or AMF was significantly higher than in untreated 
controls. In the salt-sensitive Demre cultivar under 150 mM NaCl, CAT  
activity reached 1489.0 µmol min-¹ mg-¹ FW with AMF, 1421.3 with Si, and 
only 800.41 in the control group.

By 45 DAST, both Si and AMF treatments had markedly increased CAT 
activity compared to the control. These treatments activated CAT at similarly 
high levels, with a more pronounced effect in the salt-tolerant Karaisali geno- 
type, suggesting an enhanced protective response to salt stress. This aligns 
with findings by Zhi et al. (2010), who reported significantly higher CAT  
activity in AM symbiotic tomato plants compared to non-AM plants under 
both salt stress and control conditions.

Ascorbate peroxidase (APX) activity was affected by the Si and AMF 
treatments, NaCl doses (75 and 150 mM NaCl), and duration of the stress 
conditions (30 and 45 DAST). The APX increased with increasing salt stress 
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compared to the control. After 45 days of treatment, the highest APX activity 
was 14.05 µmol min-1 mg-1 FW in the Si-treated and 13.49 in the AMF  
inoculated Karaisali cultivar at 150 mM NaCl treatment. Compared to the 
control plants, the APX activity was 103.20 and 134.07% higher in the AMF 
inoculated Karaisali cultivar, and 85.85 and 138.67% higher in the AMF  
inoculated Demre cultivar at 75 and 150 mM NaCl treatments, respectively.

Plant cells contain an array of protection mechanisms and repair sys-
tems, which are controlled by various enzymatic and non-enzymatic antioxi-
dant defense systems. Enzymatic antioxidant defense systems include CAT, 
APX, POX, SOD, MDHAR, DHAR and GR (Latef, Chaoxing 2011, Sen 2012). 
Some enzymes regulate the intracellular H2O2 content, which is the most 
important component of catalase and peroxidase enzymes (Mhamdi et al. 
2010). Catalase catalyzes the reduction of H2O2 to water using either an iron 
or manganese cofactor, and they can also remove organic H2O2 to oxidize 
toxins, such as phenols, formic acid, and hydroperoxides (Moron, Castilla- 
-Cortázar 2012, Riaz et al. 2018). 

Ascorbate is used in the ascorbate-glutathione cycle as a specific electron 
donor, especially in the chloroplast. Therefore, ascorbate is crucially impor- 
tant as a catalyst in the conversion of H2O2 into H2O and a primary H2O2 
detoxifying system in plant cells under abiotic stress conditions (Sofo et al. 
2015). In this study, APX activity was increased with stress treatment in all 
the applications. However, this increase was significant in AM-applied plants 
compared to non-AM plants. Under 75 mmol salt stress, neither Si nor AMF 
applications had a statistically significant effect on the APX enzyme activity 
compared to the control group (P>0.05). In contrast, at 150 mmol salt stress, 
both Si and AMF treatments significantly increased APX activity. These  
results suggest that the salt-sensitive pepper variety (Demre) exhibits evi-
dent salt damage due to its limited capacity to produce APX enzyme under 
stress conditions. Although both Si and AMF application triggered better 
performance than the control groups, it was observed to be at a very low 
level compared to the salt-tolerant variety (Karaisali). Rennenberg (1980) 
and Manivannan et al. (2016) stated that Si increases the activity of APX  
in plants, similar to our results. Also, He et al. (2007) indicated that higher 
APX and POD activity in AM tomato may be associated with the enhanced 
plant growth and salt tolerance under salt and saltless condition. 

Salt stress increased the glutathione reductase (GR) activity in both  
pepper genotypes. The GR activity in Si-treated plants at 75 and 150 mM 
NaCl treatments reached 11.48 (an increase of 121.2%) and 13.56  
(an increase of 127.0%) µmol min-1 mg-1 FW in the Karaisali cultivar  
(tolerant) 30 and 45 DAST, respectively. Also, AMF-treated plants at 75  
and 150 mM NaCl treatments reached 13.78 (an increase of 145.5%) and 
15.11 (an increase of 145.6%) µmol min-1 mg-1 FW in the Karaisali cultivar 
(tolerant) 30 and 45 DAST, respectively. Under the same conditions, the GR 
activity in the Si-treated plants of the Demre cultivar (sensitive) was 5.27  
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(a decrease of 92.6%) and 6.76 (an increase of 116.9%) µmol min-1 mg-1 FW 
and, it was 11.38 (an increase of 199.8%) and 12.48 (an increase of 216.0%) 
µmol min-1 mg-1 FW in AMF inoculated plants. 

The glutathione level increases with increasing GR activity in plants, 
which, then, improves salt tolerance in plants. It was clearly determined that 
Si and AMF applications under salt stress had a high level of effect on all 
antioxidant enzymes and there were similarities in both applications.  
However, it was determined that AMF application on GR enzyme activity 
was more significant than Si and control, and this salience was much more 
prominent in the salt sensitive Demre genotype. Zhu et al. (2004) reported 
that Si applications under salt stress increased the GR enzyme activity  
in cucumber plant, similar to our study. The activity of APX and GR and the 
content of AsA and GSH increased due to AMF in salt-affected C. sativus 
(Abd_Allah et al. 2015, Hashem et al. 2015) and Capsicum annuum (Cekic  
et al. 2012).

Silicon (Si) protects plants from oxidative stress under saline conditions 
by enhancing antioxidant enzyme activity, which helps scavenge reactive 
oxygen species (ROS). This is considered the primary mechanism by which Si 
mitigates salt-induced damage (Manivannan et al. 2016). The findings  
recorded in this study are consistent with those reported for different plant 
species under different stress conditions (El-Banna, Abdelaal 2018, Wang  
et al. 2016). Arbuscular mycorrhizal symbiosis may have stimulated produc-
tivity by reducing the ROS production under saline conditions, as indicated 
by an increase in enzyme activities (such as CAT and POX) – Talaat, 
Shawky (2011). Moreover, the authors showed that since the cell membrane 
damage was lower in AM symbiosis compared to non-AM plants and SOD, 
APX and POD activity was contributed to protect plant from salinity injury, 
the induced SOD, APX and POD activity in AM symbiosis may be an impor- 
tant mechanism to improve salt resistance of AM plants (Munns 2005,  
Langenfeld-Heyse et al. 2007).

The results of enzyme activity can be attributed to silicon and AMF  
affecting membrane stability and selective permeability, ultimately increas-
ing electrolyte leakage (El-Banna, Abdelaal, 2018). The salinity stress  
increases free oxygen radicals, such as hydroxyl radicals (OH), hydrogen 
peroxide (H2O2), singlet oxygen (O2), alkoxyl radical (RO) and superoxide 
radical (SOR), in plant cells, thus causing oxidative stress (Sharma et al. 
2013). The oxidation due to ROS limits the normal metabolism of cells and 
destroys the DNA, proteins, lipids, and other macromolecules of cells  
(Perez-Lopez et al. 2009, Gill, Tuteja 2010, Wang et al. 2012, Ahanger et al. 
2020). These free radicals lead to irreversible damage to lipids and proteins. 
Lipid peroxidation through ROS is an essential mechanism of salt toxicity  
in higher plants, and destroys the integrity of the cell membranes, and even-
tually, cell death occurs (Dolatabadian et al. 2008, Kusvuran et al. 2013, 
Coskun et al. 2016). The application of silicon improves the ROS-scavenging 
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ability of plants by regulating the activity of antioxidant enzymes (Kim et al. 
2017).

The MDA accumulation in pepper leaves was determined under different 
levels of salinity and the results revealed a significant increase in MDA level 
under salt stress between 30 and 45 days after the stress treatment (DAST). 
The highest MDA levels (11.81 and 14.23 µmol g-1 FW) were recorded in the 
control treatment with the Demre genotype following the 150 mM NaCl 
treatments at 30 and 45 DAST, respectively (Figure 3). Similarly, the activi-
ty was lower with Si and AM treatment when compared with control in the 
Karaisalı genotype. The MDA content which is an indicator of stress  
in plants and an end-product of lipid peroxidation reflects the effects of 
stress on membranes, which are the primary targets of stress. The increase 
in the MDA content under abiotic stress conditions showed that the stress 
triggered lipid peroxidation in the cell membrane through ROS (Moussa, 
Aziz 2008, Qiu et al. 2014, Qing et al. 2015). Previous studies have shown 
that MDA levels increased especially in stress-sensitive genotypes. This  
increase in MDA content was attributed to the formation of ROS. The diffe- 
rences in MDA content between genotypes can be associated with the differ-
ences in the ROS scavenging abilities of genotypes, and the ability of geno-
types to protect themselves against oxidative stress (Rosales et al. 2012,  
Li et al. 2013, Mansori et al. 2015). The MDA content in pepper leaves  
increased with an increase in salt stress, and Si and AMF application  
reduced MDA accumulation significantly when compared to non-Si plants. 
Moreover, these determined changes indicated that a decrease in lipid perox-
idation content with Si and AMF application compared to control groups was 
demonstrated in the salt-sensitive genotype (Demre). Similar to the results 
obtained in this study, Si application significantly decreased the MDA con-
centration, the end-product of lipid peroxidation in maize (Moussa 2006), and 
grapevine rootstock (Soylemezoglu et al. 2009). Coskun et al. (2016) suggest-
ed that silicon (Si) may contribute to maintaining membrane integrity and 
reducing permeability under stress conditions. Similarly, Huang et al. (2010) 
reported that arbuscular mycorrhizal fungi (AMF) inoculation significantly 
decreased superoxide (O2

–) and malondialdehyde (MDA) contents in tomato 
leaves. This indicates that AMF can mitigate the adverse effects of salinity 
and play a crucial role in supporting tomato growth. Saline conditions  
increase osmotic pressure, which restricts water uptake and leads to ionic 
imbalance, as well as oxidative, ionic, and osmotic stresses (Soundararajan 
et al. 2017).The K ions in the K2SiO3 fertilizer applied with the presence  
of excessive salt (NaCl) in the vermiculite substrate quickly react with  
sodium, causing the formation of Na2SiO3. The formation of Na-silicate pre-
vents salt damage to the plants. Increased photosynthetic activity, K/Na  
ratio, enzymatic activity, and concentration of the soluble materials in the 
xylem are the indicators of positive influence of silicon application under salt 
stress conditions (Matichenkov, Bocharnikova 2001). Although dry weight 
and chlorophyll content of plants were negatively affected by salt stress, the 
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application of sodium silicate – Na2SiO3 (0.25-0.50 mM Si) to the nutrient 
solution of wheat plants grown under salt stress (100 mM NaCl) increased 
proline content and reduced membrane permeability (Tuna et al. 2008). 

Following the observations of biochemical analyses, we found that AM 
colonization and silicon treatments enhanced the plant growth and ability  
of antioxidant defence enzymes to act under different salt stress levels  
in pepper. AMF and Si might alleviate the growth limitations imposed  

Figure 4. Mean effects of nutrient solutions containing different salt doses on some enzyme 
activities of the Karasali and Demre pepper cultivars tested with the least mean squares 

analysis.
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by saline conditions. Our results showed that salt stress caused damage  
in the pepper genotypes. However, this damage was lesser following the 
AMF and Si applications, where the plants used antioxidative response 
mechanisms more effectively and had significantly increased levels of enzyme 
activity.

The study data showed that all salt doses, treatments, time, and pepper 
genotypes, as well as the interaction of pepper genotype and salt dose were 
statistically significant in the response of all antioxidant enzymes. As a result 
of the least square mean analysis on antioxidant enzymes, plant genotype, 
time and salt doses, it was determined that the antioxidant enzyme produc-
tion was high in the salt-resistant pepper genotype (Karaisali) and the MDA 
production was low, while the antioxidant enzyme production was lower  
in the sensitive genotype (Demre) – Figure 4. This means that the defence 
mechanism (derived from antioxidant enzymes) is stronger in salt-resistant 
varieties, and the low production of MDA means that salt stress tolerates the 
damage to the cell. In terms of sampling time, antioxidant enzyme produc-
tion increased in order to reduce the effect of salt damage to the cell as time 
progressed, and MDA production continued to increase as the cell was  
damaged. When the effects of salt doses on enzyme activities were evaluated, 
the plant defense mechanism did not occur in the control groups, and the 
MDA content was very low because there was no antioxidant enzyme produc-
tion and cell damage. However, with increasing salt doses, it is seen that the 
plant gets defensive and increases the production of antioxidant enzymes, 
and similarly, the MDA content increases due to cell damage.

CONCLUSION

Salt stress can seriously damage plant growth, reduce quality and yield; 
therefore, it is necessary to reduce/mitigate oxidative stress under salt stress 
conditions in order to maintain crop production in saline soils. Peppers were 
inoculated with arbuscular mycorrhizal fungi and treated with silicon  
(Silicon and AMF) to evaluate the effect of salt on enzymatic activity in salt 
stress sensitive and resistant pepper genotypes. The results showed that the 
application of silicon and AMF increased the salt tolerance of pepper plants. 
However, it was determined that antioxidant enzyme production was high  
in the salt-resistant pepper genotype (Karaisali), MDA production was low 
due to defence mechanism (derived from antioxidant enzymes). In addition, 
it was observed that the MDA content was very low in the control groups, 
since stress condition did not occur and there was no antioxidant enzyme 
production and cell damage. The positive effects of silicon and AMF on 
plants consist of its enhanced antioxidant defence capability, which alleviates 
oxidative damage caused by the overproduction of reactive oxygen species 
under conditions of salt stress.
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Future studies could investigate the effects of different silicon and 
AMF-containing fertilizers on the enzymatic activities and physiological  
parameters of other plants under abiotic or biotic stress conditions and  
evaluate in detail the response of plants to silicon and AMF application.
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