

Karacaer, C., Bahtiyar, N., Aydemir, B., Küçük Ataman, B., Şekeroğlu, M., Sevinç Afşar, L., Güler Aksoy, E., Nogay, F., Algül, Y., Demir, C., Narinoğlu, T. and Cinemre, F. (2024) 'Circulating trace element status in vitamin \mathbf{B}_{12} deficiency: antioxidant properties', $Journal\ of\ Elementology,\ 29(4),$

available: https://doi.org/10.5601/jelem.2024.29.2.3361

RECEIVED: 11 June 2024 ACCEPTED: 26 September 2024

ORIGINAL PAPER

Circulating trace element status in vitamin B_{12} deficiency: antioxidant properties

Cengiz Karacaer¹, Nurten Bahtiyar², Birsen Aydemir³, Buket Küçük Ataman³, Mehmet Ramazan Şekeroğlu⁴, Leyla Afşar⁴, Esra Güler Aksoy⁴, Fatıma Betül Nogay⁴, Yusuf Algül⁴, Cenan Demir⁴, Taha Sencer Narinoğlu⁵, Fatma Behice Cinemre⁴

¹Department of Internal Medicine,
Sakarya University, Faculty of Medicine, Sakarya, Turkey
²Department of Biophysics, Istanbul University-Cerrahpaşa,
Cerrahpaşa Faculty of Medicine, Istanbul, Turkey

³Department of Biophysics,
Sakarya University, Faculty of Medicine, Sakarya, Turkey

⁴Department of Medical Biochemistry,
Sakarya University, Faculty of Medicine, Sakarya, Turkey

⁵Sakarya 112 Emergency Call Center, Sakarya, Turkey

Abstract

It is known that vitamin B₁₂ and certain trace elements possess antioxidant properties; however, the mechanisms underlying relationships between vitamin B₁₂ and trace elements have not been fully elucidated. The aim of this study was to evaluate the relationship between serum levels of vitamin B₁₀, selenium (Se), cobalt (Co), copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) in patients with vitamin B₁₂ deficiency compared to healthy controls. The study included a total of 50 patients with vitamin B_{12} deficiency and 40 healthy controls. Serum levels of Se, Co, Cu, Zn, Fe, and Mn were measured using inductively coupled plasma optical emission spectrometry (ICP-OES), while biochemical parameters were assessed using an automated analyzer. Statistical analysis was conducted with SPSS 21.0 statistical software (SPSS, Chicago, IL, USA), with a P-value of <0.05 considered statistically significant. Serum levels of vitamin B₁₂, Zn, Mn, Co, Fe, and iron binding capacity were significantly lower in the vitamin \mathbf{B}_{12} deficiency group compared to controls. Positive correlations were observed between vitamin B_{12} and $\tilde{S}e$, Fe and mean corpuscular volume (MCV), Fe and ferritin, Zn and Cu, and Zn and Se. Conversely, negative correlations were found between vitamin B₁₂ and Fe, Se, and Mn in the vitamin B₁₂ deficiency group. Our data suggest that the interactions among circulating Zn, Mn, Co, Fe, and vitamin B₁₂ are significant in the oxidant/antioxidant balance, and may play a crucial role in the antioxidant properties observed in patients with vitamin B₁₂ deficiency.

Keywords: vitamin B_{1,9}, deficiency, trace elements, antioxidant properties

Cengiz Karacaer, MD, Department of Internal Medicine, Faculty of Medicine, Sakarya University, Sakarya, Turkey, e-mail: karacaerc@yahoo.com

^{*} The source of funding - this study was not financed by any fund.