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Abstract 

The use of innovative cereal cultivation technology based on the application of plant growth-pro-
moting bacteria together with undersown legume is gaining particular importance, especially  
in organic cereal cultivation, which is expected to provide raw material with high protein  
content under changing climate conditions. To address this, a field study was conducted  
in 2019-2021 to determine the effects of plant growth-promoting rhizobacteria (PGPR) and phos-
phorus-releasing bacteria applied together with undersown crops on the nitrogen content, total 
protein and total protein yield of spring barley grown in organic agriculture. Two factors were 
investigated in the experiment. A: bacterial formulation: control (without bacterial formulation), 
plant growth-promoting rhizobacteria (PGPR) (Bacillus subtilis, Bacillus amyloliquefaciens, 
Pseudomonas fluorenscens), phosphorus-releasing bacteria (Bacillus megaterium var. phosphaticum, 
Arthrobacter agilis). B: undersown crops: control (no undersown crops), red clover, red clover + 
Italian ryegrass, Italian ryegrass. The nitrogen content was determined in spring barley grain, 
and subsequently total protein content and total protein yield were calculated. The results  
substantiate the conclusion that the development of an innovative technology of spring barley 
cultivation based on the application of PGPR bacteria together with undersown red clover  
or a mixture of red clover and Italian ryegrass will ensure obtaining grain with high total pro-
tein and total protein yield. Such grain meets high quality parameters, and is a valuable raw 
material for the production of groats and flakes that are functional foods from organic cultiva-
tion.
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INTRODUCTION

Spring barley grain from organic agriculture is destined for consumption, 
and its nutritional value increases with increasing protein content (Alharbi 
et al. 2022). In recent years, the world, including Poland, has been experienc-
ing climatic change due to periodic precipitation deficits and rising tempera-
tures during the growing season of cereals, which negatively affects their 
yield and grain chemical composition (Hafez et al. 2021, Koryagin et al. 
2022). Thus, it is necessary to introduce innovative technologies for grain 
cultivation to mitigate the detrimental effects of drought, which will ensure 
high grain yields with high nutrient content. This will also enable an unin-
terrupted supply of food, with good quality, increasing food security.

Global research in recent years has shown that the use of PGPR bacteria 
provides plant resistance to environmental stresses, including drought stress 
(Hafez et al. 2019). PGPR bacteria alter root morphologies, resulting in bet-
ter absorption of nutrients, including nitrogen, and they increase soil water 
content (Glick 2014). Bacteria that stimulate plant growth and development 
work through various mechanisms. Many studies have demonstrated that 
PGPR bacteria can act as biofertilizers that directly promote plant growth by 
improving acquisition of certain nutrients through different processes, such 
as nitrogen fixation, mineral solubilization, phosphate and potassium absorp-
tion, siderophore production and iron sequestration (Hardoim et al. 2015). 
PGPR bacteria can also produce cytokinins, gibberellins or both to promote 
plant growth, thereby increasing the nutritional value of cereal grains (Kang 
et al. 2014). Also, microorganisms such as phosphorus-releasing bacteria 
tend to produce enzymes and solubilize insoluble phosphate from organic and 
inorganic phosphate sources (Ahmad et al. 2017, Iqbal et al. 2022). Phospho-
rus is a macronutrient essential for proper plant growth and development, 
but it is often the limiting nutrient in the soil, and its deficiency degrades 
the chemical composition of cereal grains. Therefore, the acquisition of P 
from the soil by plant roots is of great interest, including the use of an organic, 
alternative form of this element, i.e. form phosphorus-releasing bacteria, 
which stimulate plant growth and have a beneficial effect on the nutritional 
value of grain (Pan et al. 2019, Psakia et al. 2019, Zaballa et al. 2020).  
Undersown crops also protect the soil from water loss by increasing the com-
pactness of the canopy (van Diggelen et al. 2021, Liu et al. 2022, Poudel  
et al. 2022). In addition, legume undersowns, thanks to nodule bacteria, have 
the ability to biologically reduce molecular nitrogen from the air (Płaza et al. 
2020). They release its excess into the soil environment, which is then taken 
up by grain crops, resulting in an increase in the nitrogen and protein con-
tent in grain (Wittwer et al. 2017). In Poland, there is a lack of research on 
the combined use of bacterial formulations with undersown crops as a live 
mulch in cereal crops. Therefore, an attempt was made to develop an innova-
tive technology for spring barley cultivation based on the use of PGPR bacte-
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ria together with undersown crops, which will ensure obtaining spring barley 
grain with high protein content for consumption use. The aim of the study 
was to determine the effect of PGPR bacteria and phosphorus-releasing bac-
teria applied together with undersown crops on the nitrogen content, total 
protein and total protein yield of spring barley grown in organic agriculture.

MATERIALS AND METHODS

The spring barley grain used for chemical analyses came from a field 
experiment conducted in 2019-2021, on an organic farm located in the village 
of Wyłazy (52°12′35″ N 22°11′05″ E) near Siedlce, Poland. The weather con-
ditions during the field experiment are shown in Figure 1. 

The field experiment was conducted on Stagnic Luvisol soil (IUSS Work-
ing Group WRB 2022). The content of available mineral nutrients in the soil 
before the establishment of the experiment is presented in Table 1. 

Table 1
The content of available mineral nutrients in the soil

Content of available mineral nutrients (mg kg-1 soil) pH
in KCL

Organic carbon,
% p.s.m.P K Mg

86 123 43 6.0 1.06
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Fig. 1. Weather conditions during the growing season of spring barley, according to the Zawady 
Meteorological Station 
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The experiment was set up in triplicate. Two factors were researched:  
A – application of bacterial formulations, B – undersown crops. The detailed 
treatments used in growing spring barley and the experimental scheme are 
shown in Figure 2. 

The bacterial species used for inoculation came from the collection of the 
Department of Soil Science and Microbiology of the Poznań University  
of Life Sciences. The density of bacterial cells in the bacterial formulations 
was determined using direct microscopy in a Thoma cell counting chamber, 
revealing 108 cells in 1 mL of culture. Spring barley grains were harvested 
from an area of 1m2 in each experimental plot. After spring barley was har-
vested, the grain was transported to a laboratory for grain yield and quality 
evaluation. Grain yield and chemical analyses were performed at an average 
grain moisture content of 13.6%. The nitrogen content of spring barley grain 
was determined using the Kjeldahl method (Krełowska-Kułas 1993). Total 
protein content was calculated by multiplying the nitrogen content by a fac-
tor of 6.25, and total protein yield was determined by multiplying the total 
protein content by grain yield. Data for each studied characteristic were  
analyzed with ANOVA. The significance of sources of variability was tested 
using the Fisher-Snedecor F-test (F≤0.05), and the differences between  
the compared averages were verified using the Tukey’s HSD test (p≤0.05). 
The strength of the relationships between spring barley grain yield, total 
protein content and total protein yield was assessed by calculating the Pear-
son’s correlation coefficients. All the calculations were performed in Statisti-
ca, version 13.3.

Fig. 2. The schematic presentation of the field experiment 
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RESULTS AND DISCUSSION

Statistical analysis demonstrated a significant effect of the experimental 
factors studied and their interaction on the total protein content of spring 
barley grain (Table 2). 

Table 2
Total protein content in spring barley grain depending on bacterial formulations  

and undersown crops means across 2019-2021 (g kg-1 d.m.)

Bacterial 
formulations# 

(A)

Undersown crops (B)

Means
control red clover

red clover + 
Italian 

ryegrass

Italian 
ryegrass

I 106.0 ± 13.1 108.2 ± 14.6 109.1 ± 11.8 105.1 ± 13.2 107.1 ± 13.6
II 107.5 ± 13.1 111.8 ± 12.9 111.5 ± 12.7 106.3 ± 13.3 109.3 ± 13.2
III 106.7 ± 11.5 110.4 ± 12.8 109.9 ± 12.6 106.2 ± 13.3 108.3 ± 12.8

Means 106.7 ± 12.7 110.1 ± 13.5 110.2 ± 12.7 105.9 ± 13.3
HSD0.05: A – 0.4; B – 0.4; A × B – 0.8

# I – control (without bacterial formulations), II – PGPR bacteria (Bacillus subtilis, Bacillus 
amyloliquefaciens, Pseudomonas fluorescens), III – phosphorus-releasing bacteria (Bacillus  
megaterium var. phosphaticum, Arthrobacter agilis), ± – standard deviation

The highest total protein content was recorded in spring barley grain 
after the application of PGPR bacteria (Bacillus subtilis, Bacillus amylo- 
liquefaciens, Pseudomonas fluorenscens), significantly lower after the applica-
tion of phosphorus-releasing bacteria (Bacillus megaterium var. phosphati-
cum, Arthrobacter agilis), and the lowest on the control, without the bacteria 
application. Studies by Basu et al. (2021), Elkelish et al. (2021) and Sedri  
et al. (2022) demonstrated positive effects of PGPR bacteria on both quanti-
tative and qualitative traits of crop plants, including total protein content  
of cereal grains. Also in a study by El-Sawah et al. (2021) the application  
of PGPR bacteria (Bradyrhizobium sp. and Bacillus subtilis) led to improve-
ments in shoot length, root length, number of branches, plant dry weight, 
leaf area index (LAI), chlorophyll content, nutrient uptake, including nitro-
gen and seed and protein yield compared to control plants. Also, studies by 
Gupta et al. (2013), Kudoyarova et al. (2017), Amna et al. (2019), Sood et al. 
(2020) and Mirskaya et al. (2022) demonstrated that PGPR bacteria stimu-
late plant growth and development through various mechanisms. They  
directly affect plant growth through production of phytohormones (Guta  
et al. 2013, Kudoyarova et al. 2017), ACC deaminase activity, nitrogen-fixing 
activity, and solubilization of potassium, phosphorus and zinc (Gupta et al. 
2013, Amna et al. 2019, Sood et al. 2020, Rashid et al. 2021). As many  
as 80% of the bacteria inhabiting the root zone of plants synthesize auxins, 
which stimulate root cell proliferation and increase the host plant’s uptake  
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of minerals and nutrients from the soil, including nitrogen, which translates 
into an increase in the total protein content of cereal grains (Mirskaya et al. 
2022). A study by Zaballa et al. (2020) demonstrated that the phosphorus- 
-releasing bacteria Entobacter ludwigii stimulates the growth of Hordeum 
valgare, which indirectly increases total protein content in grain. In our 
study, the use of undersown crops also significantly differentiated the total 
protein content of spring barley grain. The highest content of this component 
was recorded in the grain of spring barley grown when undersown with  
a mixture of red clover and Italian ryegrass and red clover, significantly  
lower on the control, without undersown crops, and the lowest when under-
sown with Italian ryegrass. This is because grasses compete with cereals  
for nutrients, including nitrogen, resulting in lower concentrations of nitro-
gen in cereal grain, even compared to cereals grown in pure sowing (Liu  
et al. 2022, Poudel et al. 2022). On the other hand, legume undersowns,  
especially those grown in mixtures with grasses, yield more stably and show 
the ability to biologically reduce molecular nitrogen from the air due to sym-
biosis with nodule bacteria of the genus Rhizobium (Płaza et al. 2020).  
They release excess nitrogen into the soil environment, from where cereals 
uptake it, resulting in an increase of the total protein content of cereal 
grains (Toukabri et al. 2021). Also, a study by Pellegrini et al. (2021) showed 
an increase in the protein content of wheat grain grown with living mulch  
of Persian clover compared to wheat grown in pure sowing. The experiment 
here also demonstrated an interaction implicating that after the application 
of PGPR bacteria, the highest total protein content was recorded in spring 
barley grain grown when undersown with red clover and a mixture of red 
clover and Italian ryegrass, significantly lower in the control variant, and the 
lowest when undersown with Italian ryegrass. After the application of phos-
phorus-releasing bacteria, the highest concentration of total protein was  
recorded in spring barley grain undersown with red clover and a mixture  
of red clover and Italian ryegrass and significantly lower in the control and 
undersown of Italian ryegrass. On the other hand, on plots without bacterial 
application, the highest total protein content was recorded in the grain  
of spring barley undersown with a mixture of red clover and Italian ryegrass, 
significantly lower when undersown red clover, followed by the control, and 
the lowest when undersown with Italian ryegrass.

Statistical analysis demonstrated a significant effect of the growing sea-
son conditions and their interaction with bacterial formulations on the total 
protein content of spring barley grain (Table 3). 

The highest total protein content was recorded in the grain of spring 
barley grown in the favourable 2020, significantly lower in the dry 2019 and 
the lowest in 2021. It should be noted that the use of bacterial formulations 
mitigates the effects of drought and increases the nitrogen content of spring 
barley grain. Also, studies by Hafez et al. (2021) and Koryagin et al. (2022) 
showed that PGPR bacteria effectively overcome the negative effects  
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of drought in plants. Most of these bacteria have the ability to support plant 
growth and development under natural conditions by fixing nitrogen, produc-
ing phytohormones, and improving nutrient availability in many drought-
prone plants (Mumtaz et al. 2019). Thus, the use of PGPR bacteria in the 
organic farming of spring barley is an innovative technology that should be 
recommended in modern agriculture facing increasingly frequent droughts. 
Research by other authors shows that weather conditions during the growing 
season of cereals, especially during flowering, grain filling and ripening,  
affect the efficiency of protein accumulation in grains (Jolánkai et al. 2018, 
Wan et al. 2020). Research by Garcia Del Moral et al. (2007) revealed high 
protein content in wheat grains grown in warm and dry climates. The effect 
of lower total protein content in years with high precipitation is most often 
attributed to the dilution effect (Yang et al. 2018). This is not consistent with 
the results obtained in the authors’ own research, in which higher total  
protein content was characterized by barley grains grown in the year with 
the highest precipitation. However, in the analyzed years of the research,  
the distribution of precipitation was very uneven. The higher sum of preci- 
pitation in year 2020 was mainly due to the high precipitation recorded  
in June. The protein content in cereals is conditioned mainly by the uptake 
of nitrogen by vegetative organs up to the flowering stage and the transloca-
tion of nitrogen reserves to grains at the filling stage (Arisnabarreta,  
Miralles 2008). Research by Hu et al. (2021) revealed 20% less nitrogen  
uptake by wheat in a year with lower precipitation. The authors also noted 
that precipitation deficiencies in April and May, the period before flowering, 
were crucial. Hu et al. (2021) also observed that precipitation deficiency  
in the post-flowering period could interfere with nitrogen translocation  
to grain. Also, Michaletti et al. (2018) suggest that drought stress during the 
period during flowering and grain filling reduces nitrogen utilization, leading 
to lower grain protein content. In some field studies, several researchers  
(Hu et al. 2018, Kondić-Špika et al. 2019) obtained higher total protein con-
tents in cereal grains in seasons with higher water availability with the 
distribution of precipitation during the growing season similar to that  

Table 3
The total protein content in spring barley grain in relation to bacterial formulations  

and growing season conditions (g kg-1 d.m.) 

Bacterial  
formulations# (A)

Years (Y)
2019 2020 2021

I 104.8 ± 2.3 124.4 ± 1.7 92.2 ± 1.5
II 107.2 ± 3.3 126.0 ± 1.9 94.7 ± 2.3
III 105.6 ± 2.5 125.4 ± 1.6 93.9 ± 2.0

Means 105.9 ± 2.9 125.3 ± 1.9 93.6 ± 2.2
HSD0.05: Y – 0.36, Y × A – 0.70

# see Table 2
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in the study reported in this article. It can be concluded that the effect  
of weather conditions on the total protein content of grain is not totally  
determined by the sum of precipitation during the entire growing season 
versus its distribution during the stages of plant development. Thus, to fully 
assess the impact of weather conditions, it is necessary to consider the sum 
of precipitation and temperature at different stages of plant growth. In our 
research, an interaction was demonstrated showing that in the dry year 
2019, the highest total protein content was recorded after the application  
of PGPR bacteria, significantly lower after the application of phosphorus- 
-releasing bacteria, while the lowest was on control sites without bacterial 
formulation. On the other hand, in 2020 and 2021, the lowest total protein 
content was recorded on the plots where no bacterial formulations were  
applied, while significantly higher content was revealed after the application 
of PGPR bacteria and phosphorus-releasing bacteria. The interaction  
of growing season conditions with undersown crops was demonstrated  
(Figure 3). 

In the favourable year 2020, the highest total protein content was recor- 
ded in the grain of spring barley grown when undersown with red clover, 
significantly lower with a undersown of a mixture of red clover and Italian 
ryegrass and the lowest on the control, without being undersown and with 
an undersown of Italian ryegrass. In 2021, with less total precipitation, the 
highest total protein content was recorded in spring barley grain grown 
when undersown with red clover and a mixture of red clover and Italian rye-
grass, lower on the control, without undersown crops, and lowest with under-
sown of Italian ryegrass. On the other hand, in dry 2019, the highest total 
protein content was recorded in the grain of spring barley grown with under-
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Fig. 3. The total protein content in spring barley grain in relation to undersown crops  
and growing season conditions (g kg-1 d.m.)
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sown of mixed red clover with Italian ryegrass, significantly lower with  
undersown of red clover, then with undersown of Italian ryegrass, and the 
lowest on the control. It should be explained that in dry years, undersown 
legumes are relatively unreliable in yield, legume-grass mixtures prove to 
thrive better, providing more nitrogen to the soil, which is taken up by cere-
als, resulting in an increase in the total protein content in grain.

Total protein yield from spring barley grain was significantly differentiated 
by the research factors of the experiment and their interactions (Table 4). 

Table 4
The total protein yield from spring barley grain in relation to bacterial formulations  

and undersown crops, means across 2019-2021 (kg ha-1)

Bacterial 
formulations# 

(A)

Undersown crops (B)

Means
control red clover

red clover + 
Italian 

ryegrass

Italian 
ryegrass

I 296.8 ± 60.0 418.1 ± 69.7 379.4 ± 88.3 283.9 ± 108.2 344.5 ± 100.6
II 388.2 ± 101.0 530.6 ± 115.4 530.4 ± 99.1 391.5 ± 114.5 460.2 ± 128.6
III 326.7 ± 69.4 478.0 ± 71.6 435.0 ± 109.2 339.6 ± 84.1 394.8 ± 106.2

Means 337.6 ± 87.3 475.6 ± 99.4 448.8 ± 116.9 338.3 ± 112.1
HSD0.05: A – 19.3, B – 22.3, A × B – 36.2

# see Table 2

The highest yield of total protein was obtained from spring barley grain 
after the application of PGPR bacteria (Bacillus subtilis, Bacillus amylo- 
liquefaciens, Pseudomonas fluorenscens), significantly lower after the appli- 
cation of phosphorus-releasing bacteria (Bacillus megaterium var. phospha- 
ticum, Arthrobacter agilis), and the lowest on the control, without the appli-
cation of bacteria. Biofertilizers are an innovative technology used in cereal 
cultivation, especially in organic farming. They provide improvements  
in yield quality and quantity (Chittora et al. 2020). Also, in a study by  
El-Sawah et al. (2021), the use of PGPR bacteria (Bradyrhizobium sp. and 
Bacillus subtilis) led to an increase in seed and protein yield compared  
to control plants. In our study, undersown crops also significantly differen- 
tiated the yield of total protein from spring barley grain. The highest total 
protein yield was obtained from spring barley grain grown when undersown 
with red clover, significantly lower with undersown mixture of red clover and 
Italian ryegrass, and the lowest with undersown Italian ryegrass and on  
a control plot without any undersown crop. It should be noted that under-
sown legumes and their mixtures with grasses are also a source of nitrogen 
for cereals, especially in organic farming. The best-known effect of legumes 
on the soil is its enrichment in nitrogen bound by nodule bacteria living  
in symbiosis with legumes (Shendy 2015, Płaza et al. 2020). The nitrogen  
is then taken up by grain, which increases the protein content and yield  
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of the grain (Toukabri et al. 2021). In our study, we also found an interaction 
implicating that after the application of PGPR bacteria the highest yield  
of total protein was obtained from spring barley grain undersown with red 
clover and a mixture of red clover and Italian ryegrass, and the lowest – 
from spring barley with undersown Italian ryegrass and on the control plot. 
On the other hand, after the application of phosphorus-releasing bacteria, 
the highest yield of total protein was obtained from spring barley undersown 
with red clover, significantly lower with undersown mixture of red clover and 
Italian ryegrass, and the lowest with undersown Italian ryegrass and in the 
control.

Statistical analysis showed a significant effect of growing season condi-
tions and their interaction with bacterial formulations on the yield of total 
protein obtained from spring barley grain (Table 5). 

Table 5
The total protein yield from spring barley grain in relation to bacterial formulations  

and growing season conditions (kg ha-1)

Bacterial  
formulations1 (A)

Years (Y)
2019 2020 2021

I 254.0 ± 59.1 411.4 ± 113.5 370.3 ± 26.8
II 318.4 ± 65.9 572.7 ± 60.0 489.5 ± 90.1
III 283.4 ± 67.3 471.3 ± 67.8 429.9 ± 72.6

Means 285.3 ± 69.4 485.1 ± 107.0 429.9 ± 84.1
HSD0.05: Y – 17.4, Y × A – 33.4

# see Table 2

The highest yield of total protein was obtained in the favourable 2020, 
significantly lower in 2021 with less precipitation and the lowest in the dry 
2019. Total protein yield is the product of grain yield and total protein con-
tent. Therefore, total protein yield was lowest in the dry year 2019, caused 
by low grain yield. The use of PGPR bacteria increases plant tolerance  
to drought, accelerates nutrient uptake and increases soil moisture (Hafez  
et al. 2019). Also, research by Basu et al. (2021) and Sedri et al. (2022) 
demonstrated the beneficial effect of PGPR bacteria on grain protein yield, 
even under drought conditions. PGPR bacteria can improve plants’ drought 
tolerance by stimulating the production of drought-tolerant substances,  
such as amino acids, 1-aminocyclopropane-1- carboxylate deaminase, volatile 
organic compounds, sugars (that prevent degenerative processes), bacterial 
exopolysaccharides and phytohormones, like auxin or indole-3-acetic acid, 
cytokinin (CK), abscisic acid, ethylene, salicylic acid. These stress relievers 
can prevent the buildup of reactive oxygen species (ROS) through the pro-
duction of antioxidant enzymes (Chieb, Gachomo 2023). In the experiment  
in question, an interaction was demonstrated, showing that in all years  
of study, the highest yield of total protein from spring barley grain was  
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recorded after the application of PGPR bacteria in spring barley, and signifi-
cantly lower after the application of phosphorus-releasing bacteria. This  
is due to the fact that PGPR bacteria stimulate plant growth and develop-
ment and increase nutrient uptake by grains, resulting in an increase  
in total protein yield.

In our study, we also demonstrated the interaction of weather conditions 
with undersown crops on the total protein yield obtained from spring barley 
grain (Figure 4). 

In the favourable 2020, as well as in the dry 2019 years, the highest  
total protein yield was obtained from spring barley grain grown when under-
sown with red clover, significantly lower with undersown mixture of red clo-
ver and Italian ryegrass, and the lowest with undersown Italian ryegrass 
and in the control. In 2021, with less precipitation, the highest total protein 
yield was obtained from spring barley grain grown together with undersown 
red clover and a mixture of red clover and Italian ryegrass, and the lowest 
– with undersown Italian ryegrass and in the control plots.

In order to evaluate the effect of total protein content and grain yield  
of spring barley on the total protein yield, the Pearson’s correlation coeffi-
cient analysis was performed (Table 6). 

Table 6
Correlation coefficients between total protein content and grain yield of spring barley  

and total protein yield

Parameter Grain yield Total protein content
total protein yield 0.8524** 0.3929**

** p<0.01

Fig. 4. The total protein yield from spring barley grain in relation to undersown crops  
and growing season conditions (kg ha-1)
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The correlation analysis demonstrated a highly significant (p<0.01) effect 
of spring barley grain yield on the total protein yield obtained. On the other 
hand, a highly significant (p<0.01) but lower correlation value was also  
obtained between grain total protein content and spring barley total protein 
yield. The correlation analysis demonstrated that in the presented study, 
spring barley grain yield has a higher influence on the obtained total protein 
yield compared to grain total protein content.

CONCLUSIONS

1. The highest total protein content and the highest total protein yield 
were recorded from spring barley grain after application of PGPR bacteria.

2. Spring barley grain undersown with red clover and a mixture of red 
clover and Italian ryegrass had the highest total protein content and total 
protein yield.

3. The conditions of the growing season significantly differentiated  
the total protein content and total protein yield of spring barley grain.

4. The innovative technology of spring barley cultivation based on the 
use of PGPR bacteria together with undersown red clover or a mixture of red 
clover and Italian ryegrass ensures the production of grain with high total 
protein content, which meets high quality parameters, and is a valuable raw 
material for the production of groats and flakes that are functional foods 
from organic farming.
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